Mitigation Enabling Energy Transition in the MEDiterranean region

Innovative solutions for energy transition in the Tunisian island of Djerba

Hassen EL AGREBI,
National Agency for Energy Management -ANME-

7th MEDENER International Conference

26th September 2019, Rhodes-Greece

Summary

1) Tunisian energy transition strategy and main Tools,

2) Tunisian Islands: Kerkenah et Djerba

3) Case study of Djerba: Innovative Energy Transition solutions: Ideas and programs

Tunisian energy transition strategy and main Tools

National Energy Transition

Un engagement durable et renouvelable

- Important issues of security of energy supply, especially for the electricity sector
- Important economic issues

Worsening energy deficit

4,1 Mtep in 2017
44% of the primary energy demand

Energy security and dependence

Natural Gas: 97% of the

power demand

Power Sector

Deficit of the Trade

Balance

Energy bill: 21 %

Need for an energy transition policy

- > EE Development
- ➤ Diversification of the Mix by strengthening RE

Tunisian energy transition strategy and main Tools

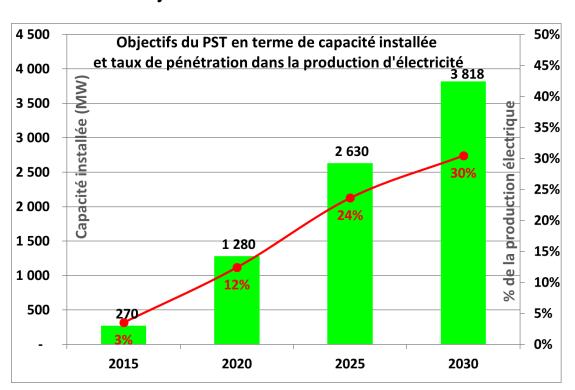
Energy transition strategy

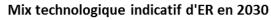
- 30% of RE in the electricity generation by 2030 :Tunisian Solar plan
- 30% of primary energy consumption reduction compared to the Business as Usual Scenario by 2030,
- 41% carbon intensity reduction to the horizon 2030, compared to 2010
- 2.5 millions m² of installed solar water heater by 2030

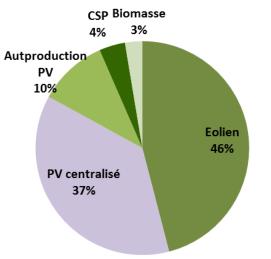
Tools

- Institutional: ANME, crated in 1985
- Fiscal: Exemption of EE and RE from TVA and customs duties
- Financing: Energy transition Fund, created in 2005 and providing advantages to EE and RE measures: An extension of the eligibility and manner of intervention
 - -Subsidies
 - -Soft Credit line
 - -Investment fund
 - -Guarantee fund

Main current programs


- ❖ Private Independent Power Generation from small and medium PV and wind facilities (less than 10 MW for PV and 30 MW for wind)
- ❖ PV and wind concession of large facility (1000 MW under bidding)
- ❖ Prosol solar water heater: around 70.000 m² per year
- Prosol PV rooftop (LV net metering): around 15 MW per year
- PromoLed: 4 millions LED with public subsidy
- Promo-Isol: insulation of 65000 roofs,
- Promo-Frigo: Replacement of 400,000 old refrigerators over 10 years old,
- ACTE (Alliance of Municipalities for the Energy Transition): energy audit of the totality of the municipalities (350 municipalities), 11 pilots municipalities,


Objectif du PST



Objectifs du Plan Solaire Tunisien

Mix technologique indicatif du PST

New announced capacity

Un engagement durable et renouvelable

2200 MW Capacité cumulée 1880 MW Capacité additionnelle à installer 2 Milliards USD Investissement Global 22% Part des ENRs par rapport à l'énergie produit 20/80 Part des investissements Public/Privé 40/60

Part des investissements Public/Privé

Tunisian Islands (about 60 islands and islets)

lles de Kerkennah (1/2)

Area: 160 km²

Number of islands: 14

Main island (s): <u>Chergui</u> et <u>Gharbi</u> <u>Population</u>: 15 501 hab. (2014)

- Energy Potential Study of the City of Karkennah is underway
- Consumption 2018: 21.8 GWH
- Potential RE: 5 MW according to a first estimate. Then 10 MW (information remains unofficial)
- Problem: used infrastructure (cable between Kerkennah and Sfax 12 km in bad condition (cable cost 30 Million dinars (submarine)
- In the study: Reflection on the use of a wind turbine: 7 MW on the island (problem of the infrastructure due to the reactive power)
- Reflection on the long-term offshore (problem of cost !!!)

meetM = 1

Ïles de Djerba

Localization: South east of Tunisia

Area: 517km²

160000 habitants

Average 1 million of tourists per year

 About 100 hotels including (40739 beds) over 45 km of coastline > The tourism sector absorbs 13736 employees.

Main Challenges of Djerba

Socio-economic challenges

- Tourism based economy
- Seasonal employment
- Crises of the other economy sectors

Environmental challenges: Vulnerability to climate change

- Sea level rise and land submersion (50 cm by 2050)
- Degradation of beaches and decline of seaside tourism (75 to 135 cm/year in case of sea level rise of 50 cm
- Risk of decline of summer tourism because of temperature increase

Energy challenges:

- High cost of supply
- Lack and cost of lands to build power stations, particularly PV power plants

Main energy consumption features of Djerba

Energy consumption of the island

- Total final energy: around 85000 toe
- Electricity consumption: around 300 GWh

Residential sector

- Total final energy: 30000 toe
- Electricity consumption: 67 GWh

Hotels

- Total final energy: 25000 toe
- Electricity consumption: 70 GWh

Water desalination

- Date of starting: 2019 (on going)
- Capacity: 50000 m3 /day

EE and RE potential and realization

Potential

Solar water heater

- Tertiary sector: around 60000 m²
- Residential: around 80000 m²

Energy efficiency

- Primary energy: 20000 toe per year
- Electricity: around 90 GWh per year

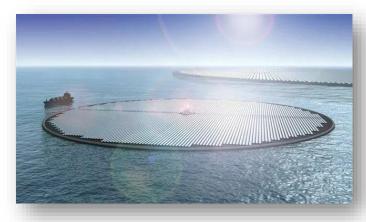
Main realizations

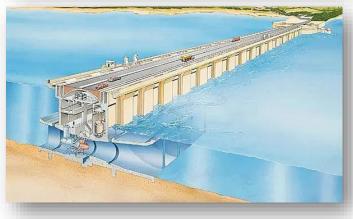
Solar Water heaters

- Hotels: More than 1000 m² mainly in hotels
- Residential: more than 9000 m²

Djerba, pilot city for LED (ongoing with FEM/UNEP)

- Distribution of 624,000 LED lamps in hotels
- Replacement of 1400 street lighting lamps with 120 W LEDs
- Distribution of 400,000 lamps for housholds




Innovative Energy Transition solutions in Djerba:Ideas and programs

Some future ideas for 100% green Island

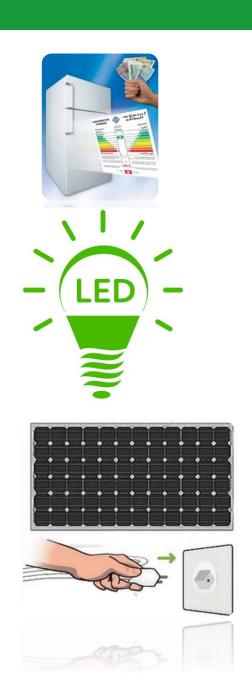
- floating Solar PV to supply the Island with power: At prefeasibility phase
 - Advantages: reduce the problem of lack of lands
 - Disadvantage: High cost
 - Tidal installation
 - Under the Roman road Djerba-Zarzis or under the Ajim-Jorf bridge
 - Issues: high cost, marine environmental impact

The Zarzis-Djerba eco-solar village project: Renewable energies for sustainable development since 2012

sur image Google

Fig. 3 : Vue virtuelle du village alliant architecture locale et aménagement intérieur selon les standards internationaux.

Create a competitiveness cluster in the region around a technopole dedicated to renewable energies, energy efficiency and biological agriculture.

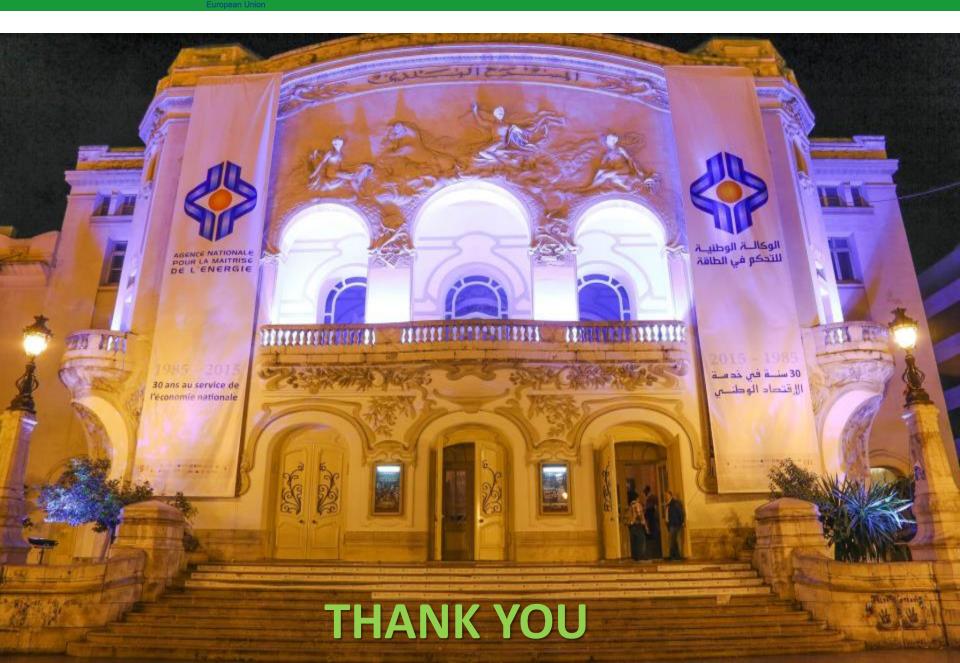


Rénovation du parc des anciens réfrigérateurs Programme « PROMO-FRIGO »

Relamping LED
Programme « PROMO-LED »

Promotion de l'autoproduction d'électricité PV: Programme « PROSOL-ELEC Social »

Programme « ACTE»


Suggestions "to a Green Islands in Tunisia"

- Faisability study: state of art (RE&EE, all sector s and stakeholders included),
- Schare experiences with the north slide(Greece, italy..): dévelop a twining program,
- Sustainable Action Plan,
- Pilot Project: Djerba green Island or Island friend of the environment (potentiel, main solutions RE&EE, finanicing, communication),
- Plans-Climat Energie-Territoire (PCET)

We must act imediately to save islands

