Mitigation Enabling Energy Transition in the MEDiterranean region

Economic Analysis and Project Financing

(Mina Nabil Adly, Sustainable Energy Expert, RCREEE)

December 9th, 2019
Content

1. Main pillar of calculations
 - Inflation rate
 - Time value of Money
 • Future value
 • Present Value
 - Interest rate
 • Simple interest rate
 • Compound interest rate

2. Capital Structure & Cost of Capital

3. Capital Budgeting Techniques
Inflation: A quantitative measure of the rate at which the average price level of a basket of selected goods and services in an economy increases over a period of time. Inflation indicates a decrease in the purchasing power of a nation’s currency.

Time Value of Money (TVM): The concept that money available at the present time is worth more than the identical sum in the future.
Main Calculation Pillars

Interest: Interest rates apply to most lending or borrowing transactions.

Businesses take loans to fund capital projects and expand their operations by purchasing fixed and long-term assets such as land, buildings, and machinery. Borrowed money is repaid by periodic instalments.

A country’s central bank sets the interest rate. When the central bank sets interest rates at a high level, the cost of debt rises. Interest rates tend to rise with inflation.
Types of Interest

Interest Rate

<table>
<thead>
<tr>
<th>Year</th>
<th>Simple</th>
<th>Compounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>121</td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td>133.1</td>
</tr>
<tr>
<td>4</td>
<td>140</td>
<td>146.4</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>161</td>
</tr>
<tr>
<td>6</td>
<td>160</td>
<td>177.15</td>
</tr>
</tbody>
</table>
Nominal Vs. Real Interest Rate

Fisher Equation provides the link between nominal and real interest rates.

Equation:

$$(1 + i) = (1 + r) \times (1 + \pi).$$

Where:

- r: Real Interest Rate
- i: Nominal Interest Rate
- π: Inflation Rate
Future Value (FV) Future value (FV) is the value of a current asset at a specified date in the future based on an assumed rate of growth.

Equation:

\[FV = PV \times (1 + i)^n \]

Where:

PV: Present Value
FV: Future Value
i: Interest Rate
n: Number of periods
Time Value of Money

Examples:

1) If I have currently EGP 100,000 and I want to invest them for 5 years with an annual interest rate 15%, What is the amount of money after 5 years?

Solution:

\[FV = PV \times (1 + i)^n \]

\[FV = 100,000 \times (1 + 0.15)^5 \]

\[FV = EGP 201,136 \]
Time Value of Money

Present Value (PV) The current value of a future sum of money or stream of cash flows given a specified rate of return.

Equation:

\[
PV = \frac{FV}{(1+ i)^n}
\]

Where:

PV: Present Value
FV: Future Value
i: Interest Rate
n: Number of periods
Time Value of Money

Examples:

2) A Solar factory has a plan is to expand its production capacity in the future by purchasing a new machine besides the existing one. If this machine is currently selling for EGP 1 million and this price is expected to inflate by 10% annually, how much should the factory deposit today in an account that will earn 15% to be able to purchase this machine after 8 years?
Time Value of Money

Solution:

\[FV = PV \times (1 + i)^n \]

\[FV = 1,000,000 \times (1 + 0.1)^8 \]

\[FV = 1,000,000 \times (1 + 0.1)^8 \]

\[FV = 2,143,589 \]

\[PV = FV / (1 + i)^n \]

\[PV = 2,143,589 / (1 + 0.15)^8 \]

\[PV = EGP\ 700,743 \]
Mixed Stream – Investment case

Example:

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(100,000)</td>
</tr>
<tr>
<td>1</td>
<td>20,000</td>
</tr>
<tr>
<td>2</td>
<td>35,000</td>
</tr>
<tr>
<td>3</td>
<td>55,000</td>
</tr>
<tr>
<td>4</td>
<td>40,000</td>
</tr>
<tr>
<td>5</td>
<td>30,000</td>
</tr>
</tbody>
</table>

Initial Investment

Revenues

Required Return (R.R) = 20%

Discounted Present Value (Discounted total Cash Flows)

\[
= \frac{20,000}{(1.2)^1} + \frac{35,000}{(1.2)^2} + \frac{55,000}{(1.2)^3} + \frac{40,000}{(1.2)^4} + \frac{30,000}{(1.2)^5}
\]

\[
= 104,147
\]
Capital Structure & Cost of Capital

Capital Structure: is how a firm finances its overall operations and growth by using different sources of funds.

Cost of Capital: the required return necessary to make a capital budgeting project, such as building a new factory or buying a new machinery.

Cost of Capital (Debt to Equity)

- **Cost of debt**
 - Loan
 - Bond
 - \(s \)

- **Cost of Equity**
 - \(P. \)
 - \(C. \)
 - \(S \)
 - \(S \)
Weighted Average Cost of Capital – WACC: is a calculation of a firm's cost of capital in which each category of capital is proportionately weighted. All sources of capital, including common stock, preferred stock, bonds, and any other long-term debt, are included in a WACC calculation.
Capital Budgeting Techniques

Capital budgeting consists of various techniques used by managers in order to evaluate the profitability of the project such as:

1. Payback Period.
2. Return on Investment.
3. Discounted Payback Period.
5. Internal Rate of Return.
6. Profitability Index.
Capital Budgeting Techniques

Payback Period: measures the time in which the initial cash flow is returned by the project. Cash flows are not discounted. Lower payback period is preferred.

Return On Investment: is the percentage increase or decrease in an investment over a set period.

Discounted Payback Period: is a variation of payback period which uses discounted cash flows while calculating the time an investment takes to pay back its initial cash outflow.

Net Present Value (NPV): is equal to initial cash outflow less sum of discounted cash inflows. Higher NPV is preferred and an investment is only viable if its NPV is positive.
Capital Budgeting Techniques

Internal Rate of Return (IRR): is the discount rate at which net present value of the project becomes zero. Higher IRR should be preferred.

Profitability Index: is the ratio of present value of future cash flows of a project to initial investment required for the project. Profitability index must be greater than 1.
Capital Budgeting Techniques

Example:

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash Flows</th>
<th>Discounted Cash Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(200,000)</td>
<td>(200,000)</td>
</tr>
<tr>
<td>1</td>
<td>60,000</td>
<td>= (60,000)/(1.2126)^1 = 49,480</td>
</tr>
<tr>
<td>2</td>
<td>90,000</td>
<td>= (90,000)/(1.2126)^2 = 61,208</td>
</tr>
<tr>
<td>3</td>
<td>110,000</td>
<td>= (110,000)/(1.2126)^3 = 61,694</td>
</tr>
<tr>
<td>4</td>
<td>75,000</td>
<td>= (75,000)/(1.2126)^4 = 34,689</td>
</tr>
<tr>
<td>5</td>
<td>85,000</td>
<td>= (85,000)/(1.2126)^5 = 32,421</td>
</tr>
<tr>
<td>Total</td>
<td>∑ = 420,000</td>
<td>∑ = 239,492</td>
</tr>
</tbody>
</table>

Calculate the four types of capital Budgeting Techniques and select from them the most important technique for taking the decisions.

Required Return (R.R) = 21.26%
Capital Budgeting Techniques

Payback Period = 2 years + \(\frac{50,000}{110,000} \) = 2.45 years

Return On Investment = \(\frac{60,000}{200,000} \) = 30%

Discounted Payback Period = 3 + \(\frac{27,618}{34,689} \) = 3.8 years

Net Present Value = -\(CF_0 + \sum CF_{1\rightarrow n} \)

\[
= -200,000 + 239,492
\]

\[
= 39,492
\]

Internal Rate of Return = 29.66%

Profitability Index = \(\frac{239,492}{200,000} \) = 1.2
Thank you!