Mitigation Enabling Energy Transition in the MEDiterranean region

INTEGRATION OF EE IN BUILDINGS – PART 4

Lighting systems Dr Miriam Benedetti, Researcher, ENEA

Training course on Energy Efficiency and Renewable Energy Sources in buildings

26 February 2020 – Tunis, Tunisia

Funded by the European Union

www.meetmed.org

Lighting systems

Brainstorming

- What do I know about lighting systems?
- What do I expect to know about lighting systems at the end of this course?

Lighting Energy Consumption

Energy consumption of lighting systems covers between 15% and 19% of global electricity consumption (over 5% of global greenhouse gases emissions) according to a study by the United Nations Environment Programme.

Lighting definition of commont terms

- Lumen: measure unit of the total "amount" of visible light emitted by a source (symbol: lm);
- Lux: unit of illuminance and luminous emittance, measuring luminous flux per unit area; equals 1 lm/m². (symbol: lx);
- Luminous efficacy: measure of how well a light source produces visible light; it is the ratio of luminous flux to power in Im/W;
- **Colour temperature of a light source**: the temperature of an ideal black-body radiator that radiates light of comparable Hue to that of the light source.

Typical lighting levels

Building area

- Office general
- Auditorium
- Bathroom
- Dining room
- Conference room
- Corridors and stairs
- Local roads
- Highways

Lux

- 400
- 400
- 300
- 100
- 300
- 50
- 3 to 8
- 6 to 14

- Incandescent (no more available in Europe)
- Halogen (partially not available in Europe)
- Metal halide
- Fluorescent
- Mercury vapour
- **High-pressure sodium**
- Induction
- LED (Light Emitting Diode)

	Incandescent	Halogen	Fluorescent	LED
Luminous efficacy [lumen/Watt]	11 - 12	18 - 28	40 -75	40 - 90
Power [W]	5 - 1.000	5 - 450	5 - 35	1 - 15
Duration [ore]	1.000	2.000 - 5.000	6.000 - 20.000	10.000 - 50.000
Colour temperature [K]	2.000 - 3.000	2.400 - 3.200	2.500 - 6.000	2.500 - 6.500

	Incandescent	Halogen	Fluorescent	LED
Power [Watt]	60	37	11	9
Luminous efficacy [lumen/Watt]	12	20	67	82
Duration [ore]	1000	3000	10000	25000
Initial Cost [€]	22	24	12	8
Cost of energy in 10 years [€]	237	146	43	35
Total cost in 10 years [€]	259	170	55	43
Economic savings %	-	34%	79%	83%

N.B: savings calculations consider a costant amount of light emitted (740 Lumen) and:

- Cost of electricity: 0,18 €/kWh
- Working hours: 6 hours per day and 365 days per year

	Halogen	Fluorescent	LED
Pros	•Good color rendering •Immediate ignition	 High efficiency Different colours available Long duration Low heat emission 	 Very long duration More compact and robust Immediate ignition Different colours available
Cons	•Low efficiency •High <mark>heat emission</mark>	•Long ignition time •Presence of <mark>mercury</mark>	 High initial cost Cold light → light pollution
End of life	Mixed waste	WEEE	WEEE

N.B. WEEE: Waste Electrical and Electronic Equipment

Main energy conservation measures

- 1. Reduce lighting demand by exploiting natural light as much as possible and also adding automatic control systems (timers and light sensors);
- 2. Reduce lighting demand by avoiding over-illumination;
- 3. Reduce lighting demand by accurately assess the position of lights;
- 4. Reduce lighting demand by using light colors for internal walls and ceilings;

5. Control electrical systems' stability to avoid voltage fluctuation and control the value of the power factor;

Table 13.12 Power quality characteristics for different electric devices.

	Active Power	Power	Current THD
	(W)	Factor	(%)
Compact fluorescent lighting systems			
13-W guad-tube compact fluorescent lamp w/ NPF	16	0.54	13
magnetic ballast			
13-W guad-tube compact fluorescent lamp w/ NPF	13	0.50	153
electronic ballast			
16-W quad-tube compact fluorescent lamp w/ HPF	16	0.91	20
electronic ballast			
Full-size fluorescent lighting systems (two lamps per			
ballast)		6.00	17
T12 40-W lamps w/ energy-efficient magnetic ballast for	87	0.98	17
T12 lamps	72	0.94	22
12 34-W lamps W/ energy-encienc magnetic balasts for	12	0.34	22
T10.40-W lamos w/ energy efficient magnetic ballest for	93	0.98	22
T12 Jamps			
T12 40.W Jamps w/ electronic ballast for T12 Jamps	72	0.99	5
T12 34-W Jamps w/ electronic ballast for T12 Jamps	62	0.99	5
T10 40-W Jamps w/ electronic ballast for T12 Jamps	75	0.99	5
T9.34-W lamps w/ electronic ballasts for T12 lamps	79	0.99	5
T9.32-W lamps w/ electronic ballast for T8 lamps	61	0.98	6
T8 32-W lamps w/ electronic ballast for T8 lamps	63	0.98	6
High-intensity discharge lighting systems			
400-W biob-pressure adjum lamp w/ magnetic transformer	425	0.99	14
400-W metal halide lamp w/ magnetic transformer	450	0.94	19
Incandescent lighting systems			
100-W incandescent A lamp	101	1.00	1
50-W MR16 low-voltage halogen lamp w/ magnetic	62	0.97	6
transformer			
50-W MR16 low-voltage halogen lamp w/ electronic	51	0.99	10
transformer			
Office equipment			
Desktop computer without monitor	33	0.56	139
13" high-resolution color monitor for desktop computer	49	0.56	138
Laser printer while in standby	29	0.40	224
Laser printer while printing	799	0.98	15
External faximodem	5	0.73	47
Electric pencil sharpener	85	0.41	33
*NLPIP measured specific products and reported their characteristics	teristics. These d	haracteristics	s may vary
substantially for similar products; specifiers should check wit	th product manufa	eturers for sp	secific
information.			
NPF = Normal Power Factor			

HPF = High Power Factor

6. Use motion/occupancy detectors where possible;

Table 13.8 Estimated % savings from occupancy sensors.

Application	Energy Savings								
Offices (Private) Offices (Open Space Rest Rooms Corridors Storage Areas Meeting Rooms	25-50% 20-25% 30-75% 30-40% 45-65% 45-65%	Tab	le 13.9 O	ccupancy se	nsor applica	ntions.			
Warehouses	40-05% 50-75% Sensor Technology	Private Office	Large Open Office Plan	Partitioned Office Plan	Conference Room	Rest Room	Closets / Copy Room	Hallways Corridors	Warehouse Aisles Areas
	US Wall Switch	•			•	•	•		
	US Ceiling Mount	•			•	•	•		
	IR Wall Switch	•			•		•		
	IR Ceiling Mount	•	•	•	•		•		
	US Narrow View							•	
	IR High Mount Narrow View							•	•
	Corner Mount Wide		•						
	View Technology Type								

7. Use efficient lamps where possible;

Table 8.4 Savings by Use of High Efficacy Lamps								
Sector		Lamp type				Power saving		
Sector	Existing		Proposed		Watts	%		
Domestic/Commercial	GLS	100 W	*CFL	25 W	75	75		
Industry	GLS GLS TL	13 W 200 W 40 W	*CFL Blended TLD	9 W 160 W 36 W	47 40 4	78 20 10		
Industry/Commercial	HPMV HPMV	250 W 400 W	HPSV 15 HPSV 25	0 W 0 W	100 150	37 35		

Table 8.5 Saving Potential by Use of High Efficacy Lamps for Street Lighting									
Existing lamp			R	Replaced units			Saving		
Туре	w	Life hrs.	Type	w	Life	W	%		
GLS	200	1000	ML	160	5000	40	7		
GLS	300	1000	ML	250	5000	50	17		
TL	2×40	5000	TL	2×36	5000	8	6		
HPMV	125	5000	HPSV	70	12000	25	44		
HPMV	250	5000	HPSV	150	12000	100	40		
HPMV	400	5000	HPSV	250	12000	150	38		

Table 2 Appropriate lamps by sector Space use **Recommended lamp type** Offices Internal Triphosphor tubular fluorescent, compact fluorescent, low voltage tungsten halogen (use sparingly) Factories Triphosphor tubular fluorescent, high pressure sodium, metal halide, inductive Hotels Triphosphor tubular fluorescent, compact fluorescent, low voltage tungsten halogen (use sparingly), LED Hospitals Triphosphor tubular fluorescent, compact fluorescent Retail Metal halide, white sodium, compact fluorescent, low voltage tungsten halogen (use sparingly), LED Triphosphor tubular fluorescent, compact fluorescent, metal halide, inductive Leisure Emergency directional LED High pressure sodium, metal halide, compact fluorescent External Car parks Multi-storey car parks Triphosphor tubular fluorescent, compact fluorescent, metal halide, high pressure sodium Floodlighting Metal halide and high pressure sodium Metal halide, high pressure sodium, triphosphor tubular fluorescent, LED Feature Sports facilities Metal halide (4,000K+)

Improvement measure	Savings	Additional notes
Improve natural light use	40 – 60 %	Savings estimated considering yearly average natural illumination where available.
Use occupancy detectors	10 – 50 %	Consider the use of the building.
Use timers	10 – 40 %	Consider actual occupancy.
On/off	10 – 50 %	Savings estimated considering an initial situation where lights are always on.
Use dimmering	10 – 50 %	Consider lighting demand.
Use light sensors	10 – 40 %	Consider lighting demand during night time.

References

- http://www.energymanagertraining.com/ Energy Manager Training
- Barney L. Capehart, Wayne C. Turner, William J. Kennedy " Guide to energy management" Fourth Edition, The Fairmont Press, 2003
- Wayne C. Turner " Energy management handbook" Fourth Edition, The Fairmont Press, 2001
- Petrecca, "Industrial Energy Management: Principles and application" Kluwer Academic Publisher
- Libro verde sull'efficienza energetica "Fare di più con meno" della Commissione Europea (2005)
- Carbon Trust, Lighting Technology Overview (www.carbontrust.co.uk)
- http://www.elettrotecnologie.enea.it

Lighting case study

- Surface = 120.880 m2;
- 450 workers per shift;
- 3 shifts per day;
- Two sheds;
- One warehouse;
- One office buildings;
- Locker rooms;
- External tracks.

Train arrival Clean	ing Emptying	Inspection	Corrective maintenance	Test	Train departure	
---------------------	--------------	------------	---------------------------	------	--------------------	--

- Energy analysis of the workshop conducted in 2011;
- Yearly water consumption = 292.000 m3;
- Yearly gas consumption = 157.300 Sm3;
- Yearly electricity consumption = 3,34 GWh

• Improvement of natural light use

Clerestories

Rooflight

Guidelines for indoor lighting – sheds:

- Optimisation of number and position of lamps;
- Selection of the most convenient lamp typology considering the Life Cycle Cost;
- Use lighting equipment allowing wide beams;
- Install separate power supplies.

Results- sheds:

- <u>Initial situation</u>: 272 mercury vapour lamps (68kW in total) always on (24/7), with a total yearly cost of energy of 90.000 Euros and a duration of 10.000 h;
- 255 High-pressure Sodium lamps with higher efficiency (124 lumen/W) and longer duration (30.000 h);
- Total cost of the substitution: 14.000 Euros;
- Total savings: 5.500 Euros/year;
- Adding the separate power supply (40 Euros/unit) savings increase to 14.000 Euros/year.

Guidelines for outdoor lighting:

- Check of lighting demand;
- Use of light sensors;
- Use high-efficiency, long-duration lamps;
- Use spotlights allowing wide beams;
- Install separate power supplies.

Results- stopover area:

- <u>Initial situation</u>: 80 mercury vapour lamps (250W per lamp) always on (24/7), with a total yearly cost of energy of 26.000 Euros and a duration of 10.000 h;
- 12 High-pressure Sodium lamps (150 W per lamp) with higher efficiency (117 lumen/W) and longer duration (30.000 h);
- Total cost of the substitution: 5.100 Euros;
- Total savings: 18.400 Euros/year.

Contact us!

www.meetmed.org meetMED Project

Funded by the European Union