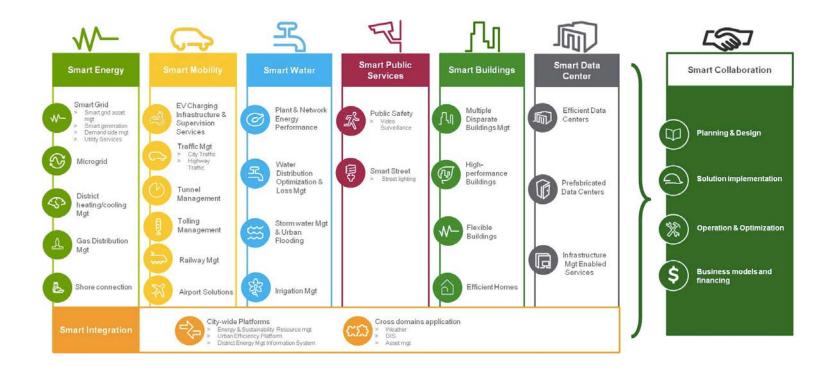


Funded by the European Union

Mitigation Enabling Energy Transition in the MEDiterranean region

Urban Mines - The Other Side of Digital Transformation

Hossam Allam, Ph.D. Regional Director for Sustainable Growth


Sustainable City

Sustainable Smart City



Challenges

- Volumes
 - Increasing sales of EEE, decreasing lifetimes
- Material Content
 - Valuable and energy-intensive precious metals
 - Toxic materials

Environmental & occupational safety problems

- Toxic emissions from burning
- Soil & water contamination from chemical disposal
- Inefficient recovery of precious metals

Phase II

Material	Occurrence in E-waste	Health and Environmental Impact
Beryllium (OECD 2003, Taylor et al. 2003)	copper-beryllium alloys, springs, relays and connections;	 beryllium sensitization/chronic beryllium disease human carcinogens released as beryllium oxide dust or fume during high temperature metal processing
Cadmium	Contacts, switches, nickel- cadmium (Ni-Cd) batteries, printer inks and toners	 persistent and mobile in aquatic environments (ATSDR 2000) damage to the kidneys and bone toxicity, released if plastic is burned or during high temperature metal processing
Lead	Circuit boards/ cathode ray tubes CTR (1 – 3 kg per CRT);	 Risk for small children and fetuses Damage to the nervous system, red blood cells, kidneys and potential increases in high blood pressure; Incineration can result in release to the air
Mercury	Lighting devices that illuminate flat screen displays, switches and relays	 Impacts the central nervous system Land filling and incineration of flat panel displays results in the release to the environment
PCBs (polychlorinated biphenyls)	Insulating fluids for transformers and capacitors, flame-retardant plasticizers	 Suppression of the immune system, liver damage, cancer promotion, damage to the nervous system Damage to reproductive systems
www.meetmed.org		Phase II

The Global E-waste Monitor 2020

Quantities, flows, and the circular economy potential

Authors: Vanessa Forti, Cornelis Peter Baldé, Ruediger Kuehr, Garam Bel

Contributions by: S. Adrian, M. Brune Drisse, Y. Cheng, L. Devia, O. Deubzer, F. Goldizen, J. Gorman, S. Herat, S. Honda, G. Iattoni, W. Jingwei, L. Jinhui, D.S. Khetriwal, J. Linnell, F. Magalini, I.C. Nnororm, P. Onianwa, D. Ott, A. Ramola, U. Silva, R. Stillhart, D. Tillekeratne, V. Van Straalen, M. Wagner, T. Yamamoto, X. Zeng

Supporting Contributors:

Federal Ministry for Economic Cooperation and Development

Countries with the highest e-waste generation per sub-region

Eastern Africa

2 0.3 Mt | 0.8 kg per capita © 1.3% | 0.004 Mt & 383

Ethiopia	55.2 kt
Kenya	51.3 kt
Tanzania	50.2 kt

Middle Africa

🕱 0.2 Mt | 2.5 kg per capita 💿 0.03% | 0.0001 Mt 🌋 80

Angola	125.1 kt
Cameroon	26.4 kt
Congo	18.3 kt

Northern Africa

🕱 1.3 Mt | 5.4 kg per capita 💿 0% | 0 Mt 🛔 240

Egypt 585.8 kt Algeria 308.6 kt Morocco 164.5 kt

Southern Africa

3.0.5 Mt | 6.9 kg per capita © 4% | 0.02 Mt 167

South Africa 415.5 kt Botswana 18.8 kt Namibia 15.7 kt

Western Africa

🕱 0.6 Mt | 17 kg per capita 🗢 0.4% | 0.002 Mt 🎩 382

	4613 kt	
Ghana	52.9 kt	
Côte d'Ivoire	30.0 kt	

Legend

E-waste generated (in Mt and kg per capita)

E-waste documented to be collected and properly recycled

E.

A Population (in millions)

E-waste general	ied
💮 0 to 1 kg per e	apita
🕘 1 to 3 kg per c	apota
🕘 3 to 6 kg per (
🔮 ö to 10 kg per	capita
104 kg per ca	pita

www.meetmec

Western Asia

🖀 2.6 Mt | 9.6 kg per capita 🔿 6% | 0.2 Mt 1 272

Turkey	847 kt
Saudi Arabia	595 kt
Iraq	278 kt

Central Asia

🔏 0.2 Mt | 7.1 kg per capita 🔿 5% | 0.01 Mt 🤱 31

Kazakhstan 172 kt Turkmenistan 39 kt Kyrgyzstan 10 kt

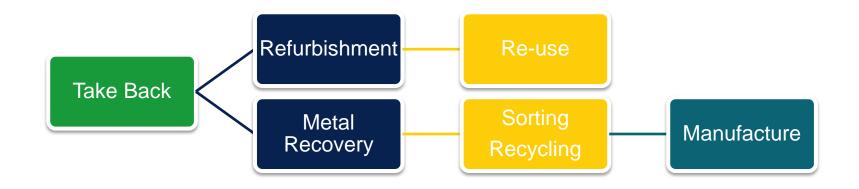
South-Eastern Asia

🕱 3.5 Mt 5.4 k) per capita O 0% 0 Mt 💄 656	
Indonesia Thailand Philippines	1.618 kt 621 kt 425 kt	

Eastern Asia

🎗 13.7 Mt | 8.6 kg per capita 🖸 20% | 2.7 Mt 🌡 1590

China 10.129 kt Japan 2.569 kt Republic of Korea 818 kt

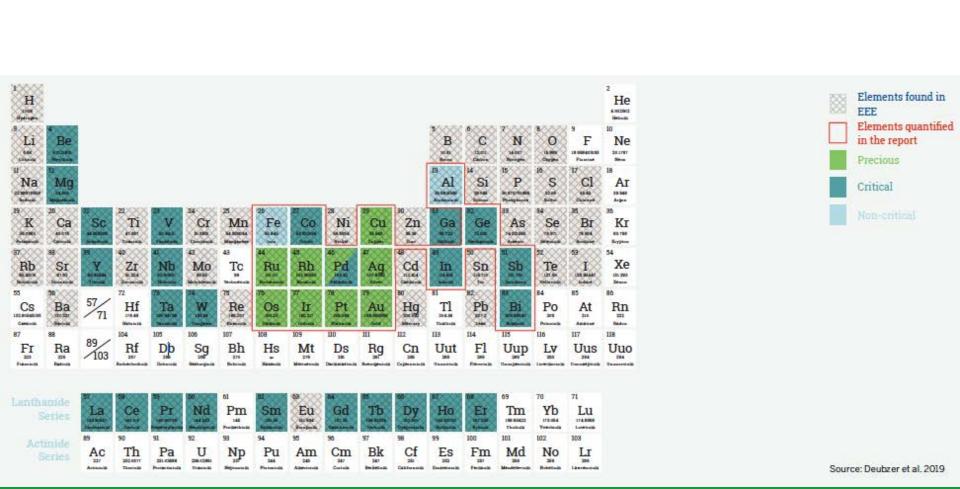

Southern Asia

E

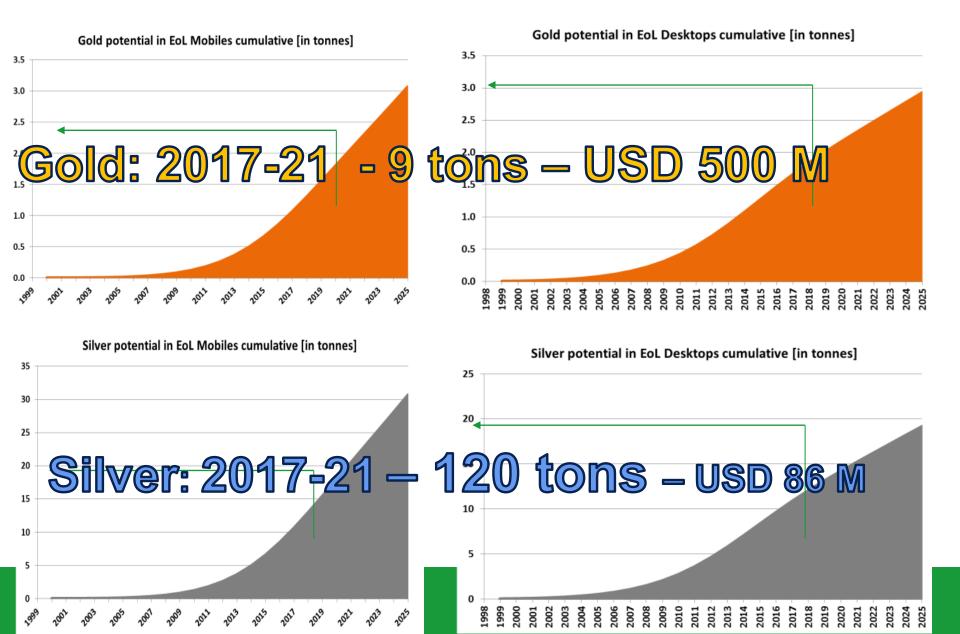
🌡 4.8 Mt | 2.6 kg per capita 🗢 0.9% | 0.04 Mt 🌡 1896

ndia	3.230 kt
ran (Isl. Rep.) 👘	790 kt
akistan	433 kt

Electronic Waste Life Cycle



E-waste Propoer Managemen Benefits


- Increase Job opportunites
- Extracting precious materials
- Refurbishment: Reduce energy consumption for producing new products – thus assist in the Climate change issue

Good news

EGYPT - BO2W Project

Egypt - Case STUDY

- Ewaste Proper handling is a Pillar of the National Digitial Transformation Strategy
- Updating Formal Recyclers' Definition
- Establishing Goveronment Collection and Refurbishing Center
- Regulations
- Capacity Building

E-waste Regulations

- Formal Recycler Definition
- Financing Mechanisms (EPR)
- Law
- Executive Regulations
- Guideliness

Contact us!

Mitigation Enabling Energy Transition in the MEDiterranean region Together We Switch to Clean Energy

For any inquires or comments, please don't hesitate to contact us

This project is funded by the European Union