

Mitigation Enabling Energy Transition in the MEDiterranean region

EN Testing standards for Air conditioners, heat pumps and liquid chilling packages

Space cooling/heating and domestic hot water applications

Julio Conde, Project manager, CEIS S.L.

Joint activity WP4: Study tour on EE in Appliances— meetMED II 2023/11/06

Contents

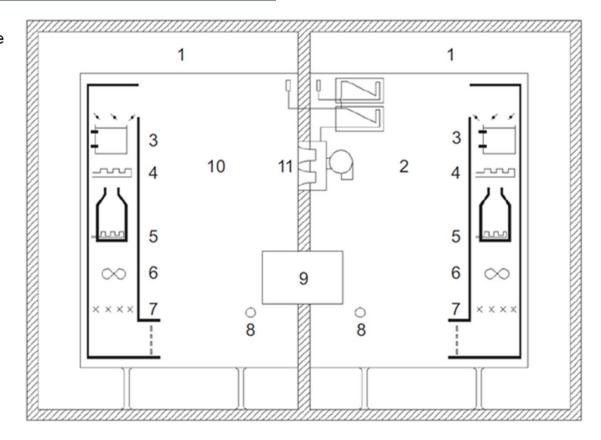
- EN 14511:2022 parts 1 to 4
 - Basic test methods
- EN 14825:2022
 - Testing at part load and calculations for SEER and SCOP
- EN 12102-1:2022
 - Sound power testing for AC/HP/LCP
- EN 16147:2017
 - DHW application testing for COP (among others)
- EN 12102-2:2019
 - Sound power testing for DHW production heat pumps

EN 14511:2022 Series

Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling.

Part 1: Terms and definitions

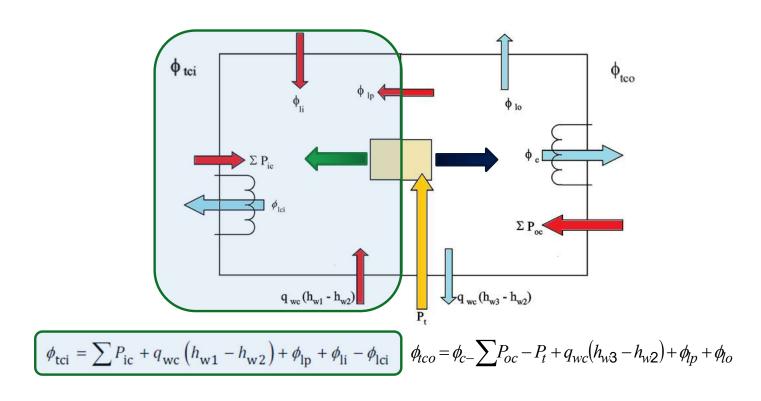
Part 2: Test conditions

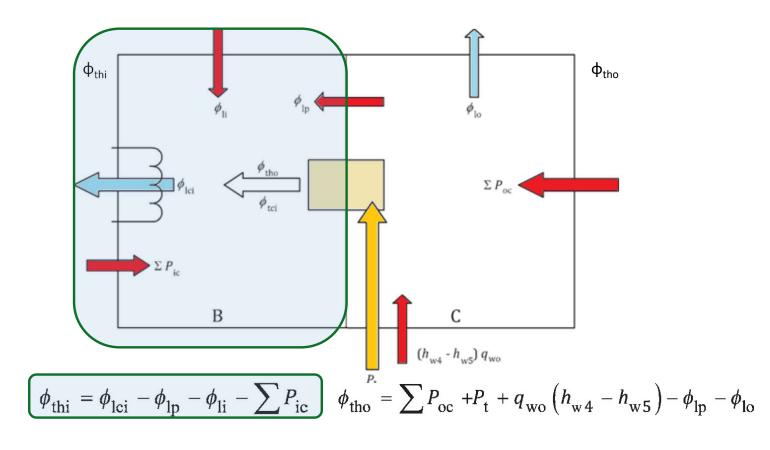

Part 3: Test methods

Part 4: Requirements

Raised view of a Balanced calorimeter

- 1 controlled-temperature air space
- 2 outdoor-side compartment
- 3 cooling coil
- 4 heating coil
- 5 humidifier
- 6 fan
- 7 mixer
- 8 air sampling tube
- 9 equipment under test
- 10 indoor-side compartment
- 11 pressure equalization device





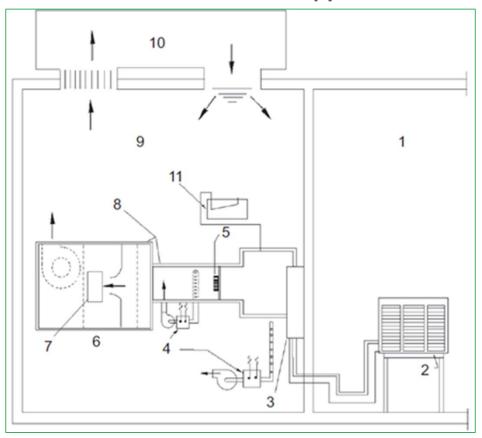
Energy flows during Cooling capacity measurement

Energy flows during Heting capacity measurement

Indoor Air enthalpy test method

40kW Rooftop UUT ready for capacity testing

30kW total cooling capacity system set-up with 4 indoor ducted units



Indoor Air enthalpy test method

- 1 outdoor-side test room
- 2 outdoor unit of equipment under test
- 3 indoor-side coil section of equipment under test
- 4 air temperature and humidity measuring instruments
- 5 mixer
- 6 airflow measuring apparatus
- 7 door/window
- 8 insulation
- 9 indoor-side test room
- 10 room conditioning apparatus
- 11 apparatus for differential pressure measurement

Raised view of an air enthalpy test room

EN 14825:2022

Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling, commercial and process cooling.

Testing and rating at part load conditions and calculation of seasonal performance.

SCOPE

- Air conditioners, heat pumps and liquid chillers, including comfort and process chilelrs
- The document specifies the temperatures, part-load conditions and calculation methods for determining the seasonal energy efficiency **SEER** and SEERon, the seasonal space cooling energy efficiency **ηs,c**, the seasonal coefficient of performance **SCOP**, SCOPon and SCOPnet, the seasonal space heating energy efficiency **ηs,h** and the seasonal energy coefficient of performance SEPR. This document also applies to the hybrid units defined in this standard
- It applies to factory-made units as defined in EN 14511-1, except single-duct, double-duct, control cabinet and close control units. It also covers direct exchange heat pumps with water (brine) (DX with water (brine)) as defined in EN 15879-1
- Also applies to hybrid units as defined in the standard

Basic concepts I Reference design conditions

Cooling mode(Tdesignc) — Pdesignc

Outdoor temperature is 35 °C DB

-> For air-to-air units 24 °C WB required for units evaporating the condensate Indoor temperature of 27 °C DB (19 °C WB)

■ Heating mode (Tdesignh) → Pdesignh

Three climatic areas have been defined: Average, colder and warmer.

Design temperature conditions are as follows:

- Average climate: Outdoor temperature is -10 °C DB (-11 °C WB) and indoor temperature is 20 °C DB
- Colder climate: Outdoor temperature is -22°C DB and indoor temperature is 20 °C DB
- Warmer climate: Outdoor temperature is +2°C DB and indoor temperature is 20 °C DB

Basic concepts II Declared conditions

Bivalent temperature (Tbivalent)

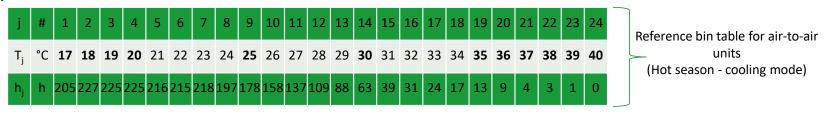
lowest outdoor temperature for which the heat pump is declared to have the capacity to compensate 100% of the heat load

- for the **average climate**, it is **+2°C BS or lower**
- for colder climate, it is -7°C BS or lower
- for warmer climate, it is +7°C BS or lower

Temperature Operating Limit (TOL)

lowest outdoor temperature for which it is declared that the heat pump is still able to deliver heating capacity

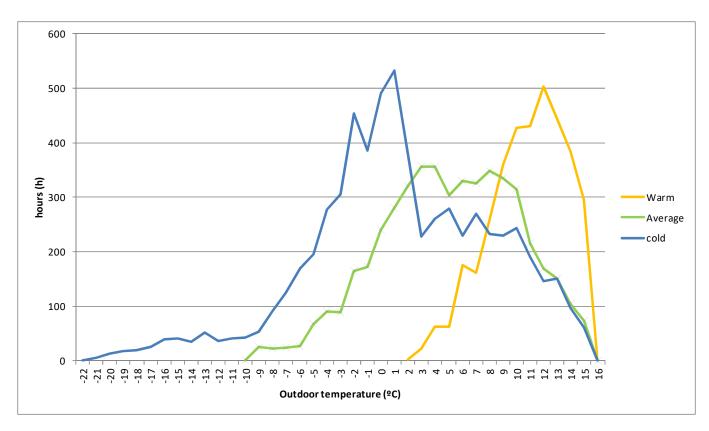
- for the **average climate**, it is **-7°C BS or below**
- for colder climate, it is -15°C BS or below
- for warmer climate, it is +7°C BS or below


Basic concepts III

Operating modes

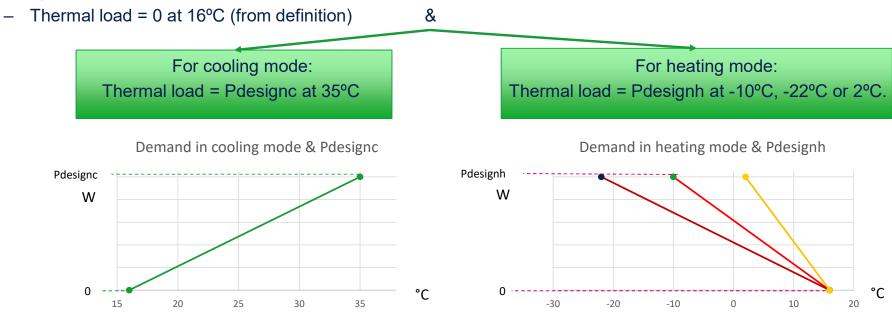
- Active: when there is thermal load and the cooling or heating function of the unit remains active (compressor ON).
- Standby mode: Waiting for input from the user
- Thermostat off mode: Compressor is off because room target conditions are already achieved
- Power Off mode: unit is disconnected from the power supply
- Crankcase heater mode: electrical heater may be ON under certain circumstances

Table bin


 Table describing the climate based on the outdoor temperature and the number of hours of occurrence in the season.

Non-active modes

Basic concepts IV


Climate definitions for the cold season

Basic concepts V

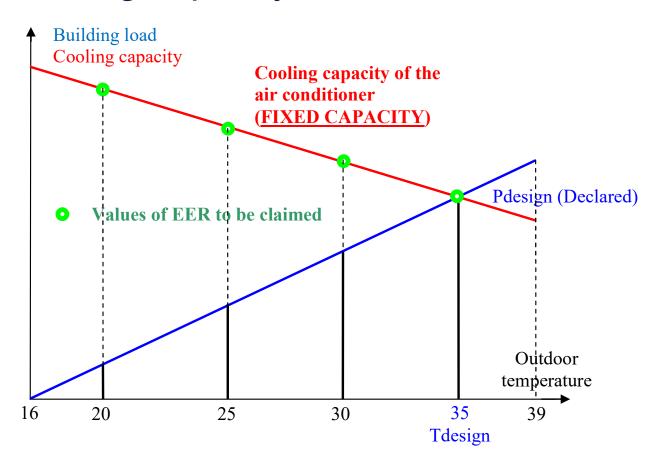
THERMAL LOAD in COOLING and HEATING modes

- Also referred to as building thermal load or building thermal demand
- Straight line defined from:

Seasonal Space cooling & heating efficiency

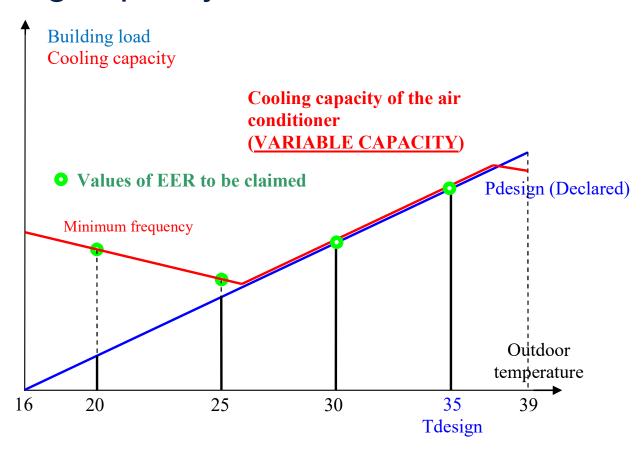
$$\eta_{s,c} = \frac{SEER}{CC} - F1 - F2$$
; $\eta_{s,h} = \frac{SCOP}{CC} - F1 - F2$

- CC is the primary energy correction coefficient to refer electricity consumption to the average efficiency of electricity generation in Europe
- The CC value must be checked in the product regulations
- F1 is a correction factor that takes into account inefficiencies due to thermostat management (3%)
- F2 is a correction factor that takes into account the effect of groundwater circulation pumps (5%)


Test Conditions

• Air/air units

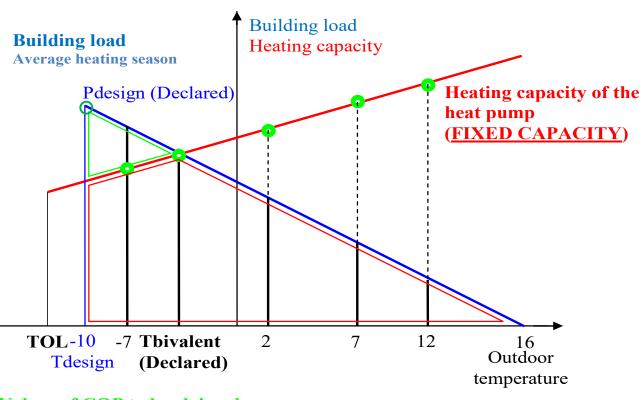
	Part load	Part load	Outdoor air dry bulb temperature	Indoor air Dry bulb (wet bulb) temperatures
		%	°C	°C
Α	(35-16)/(_{Tdesignc} -16)	100	35	27(19)
В	(30-16)/(_{Tdesignc} -16)	73,68	30	27(19)
С	(25-16)/(_{Tdesignc} -16)	47,37	25	27(19)
D	(20-16)/(_{Tdesignc} -16)	21,05	20	27(19)



Cooling capacity and termal load for On/Off unit

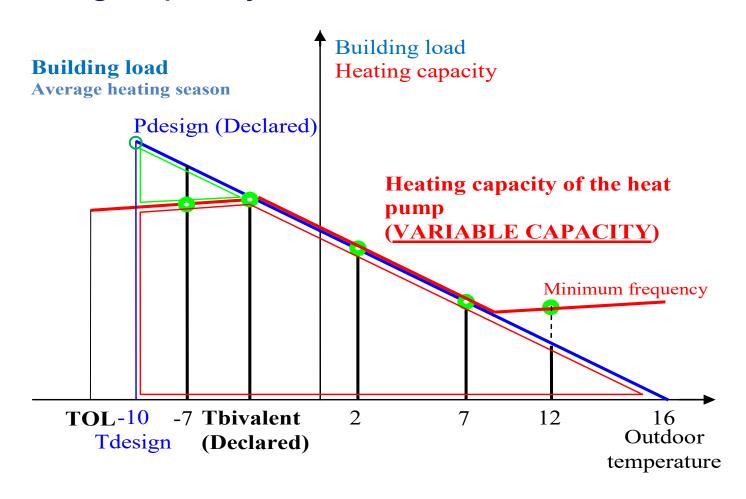
Cooling capacity and termal load for variable capacity unit

Test Conditions


Air-to-air units

	Partial load in % of load			Outdoor heat exchanger	Internal heat exchanger	
	Part load	Average	Warmer	Colder	Dry(wet) bulb temperatures °C	Dry bulb temperature °C
Α	(-7 - 16) / (_{Tdesignh} -16)	88,46	n/a	60,53	-7(-8)	20
В	(+2 - 16) / (_{Tdesignh} -16)	53,85	100	36,84	2(1)	20
С	(+7 - 16) / (_{Tdesignh} -16)	34,62	64,29	23,68	7(6)	20
D	(+12 - 16) / (_{Tdesignh} -16)	15,38	28,57	10,53	12(11)	20
Ε	(TOL ^a - 16) / (_{Tdesignh} - 16)			TOL	20	
F	(Tbivalent - 16) / (_{Tdesignh} - 16)			Tbivalent	20	
G	(-15 - 16) / (_{Tdesignh} <u>-16</u>)	n/a	n/a	81,58	-15	20

^a If TOL <Tdesignh replace TOL by Tdesignh


Heating capacity and Heat load for On/Off unit

- Values of COP to be claimed
 - ☐ Heating needs covered by the heat pump
- \square Heating needs covered by an electrical heater COP = 1

Heating capacity and Heat load for variable capacity unit

EN 12102-1:2022

Air conditioners, liquid chilling packages, heat pumps, process chillers and dehumidifiers with electrically driven compressors.

Determination of the sound power level Air conditioners, liquid chilling packages, heat pumps for space heating and cooling, dehumidifiers and process chillers

Sound pressure and Sound power

☐ Sound pressure

The sound pressure, p (Pa) is defined as the instantaneous pressure difference due to noise (fluctuating) and the atmospheric pressure.

It depends on the sound source and environment of the sound source (location set-up)

☐ Sound power

The Sound power P (W) is the amount of acoustic energy radiated by a noise source. This is depedent on the noise source and independent from noise source location o distance at which the sound power is measured

Both parameters are usually expressed in dB or dB(A)

The dB reference for sound pressure is $P_0 = 20*10^{\circ}(-6)$ Pa = $20 \,\mu\text{Pa} \longrightarrow L_P = 20 \cdot Log \,\frac{P}{P_0}$

The dB reference for sound power is $W_0 = 10*10^{\circ}(-12) \ W = 1 \ pW$ $\longrightarrow L_W = 10 \cdot Log \frac{W}{W_0}$

EN 12102-1:2022 + EN ISO 3741:2010

☐ Direct test method

Sound power is obtained from measurements of sound pressure level in the reververant sound field and Sabine's absorption coefficient of the room with the unit under test installed in the test room.

☐ Comparison method

Sound power is obtained from comparison between the sound pressure levels in the room from the unit under test and a Reference Sound Source (RSS)

^{*}Allowed test methods in EN 12102-1 are developed in:

EN ISO 3741	EN ISO 3744	
EN ISO 3742	EN ISO 3745	EN ISO 9614 series
- Reverberant rooms	- Free field conditions	- Intensimetry

EN 12102-1:2022 + EN ISO 3741:2010

□ Depending on the selected test method, we measure in the third octave range from 100Hz to 10,000Hz or from 100Hz to 6,300Hz (intensimetry methods)

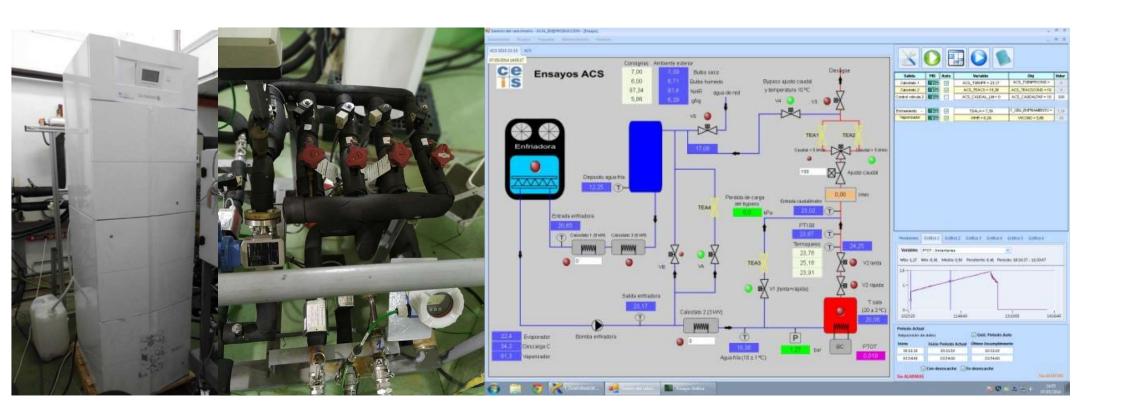
1/3 Octave	Final Result [dB]		
100Hz	47,5		
125Hz	42,6	51,2	
160Hz	47,5		
200Hz	50,8		
250Hz	48,0	56,2	
315Hz	53,6		
400Hz	50,9		
500Hz	51,8	56,6	
630Hz	52,5		
800Hz	52,7		
1kHz	52,0	56,7	
1.25kHz	-		
1.6kHz	50,3		
2kHz	48,8	53,7	
2.5kHz	47,2		
3.15kHz	-		
4kHz	45,0	50,0	
5kHz	43,7		
6.3kHz	40,4		
8kHz	40,1	44,5	
10kHz	-		
Globa	62,6	62,6	

Example of results for an equipment with VPD > 10

Heat pumps with electrically driven compressors - Testing, performance rating and requirements for marking of domestic hot water units.

□ Scope

- Air-to-water, water(brine)-to-water and direct exchange heat pumps (DX)
- Only applies to DHW heat pumps rated as a single system, including a heat pump and a hot water storage tank



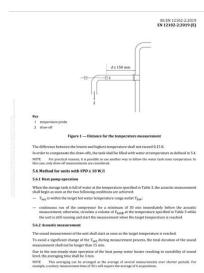
☐ Test conditions

	Heat source	Heat source	Heat pump ambient	Ambient temperature for storage tank in °C
Type of heat source	Dry bulb(wet bulb) air temperature in °C	Inlet/outlet or bath temperature ^a in °C	temperature range in °C	
Outdoor air-source heat pump (located indoors)		-	between 15 and 30	20
Average	7 (6)			
Colder	2 (1)			
Warmer	14 (13)			
Outdoor air-source heat pump (located outdoors)		_	temperature of the heat source	20
Average	7 (6)			
Colder	2 (1)			
Warmer	14 (13)			
Unheated air space	15 (12)	-	temperature of the heat source	15
Indoor air	20 (15)	-	temperature of the heat source	20
Extracted air	20 (12)	-	between 15 and 30	20
Water	-	10 / 7	between 15 and 30	20
Glycol water (brine)	-	0 / -3	between 15 and 30	20
Direct expansion	-	4	between 15 and 30	20

- ☐Test Stages
 - □Stage B Filling and volume of the storage tank
 Only for units within EU 814/2013 scope up S tapping cycle only
 - □Stage A Stabilisation (preconditioning)
 - ☐Stage C Warm-up period
 - ☐Stage D Steady state power consumption
 - □Stage E Water tapping and COP determination
 - ☐ Stage F Mixed water at 40°C and reference hot water temperature

- ☐ Test results from Stages B,C,D And F allows to calculate:
 - Hot water tank Heat-up time
 - Standby power input (= Pes*CC)
 - Qelec*
 - COPDHW for the use profile declared by the manufacturer
 - Tank volume*
 - V40 (mixed water at 40°C)*
 - Reference temperature (required by the French regulation only)
 - AEC Annual energy consumption
 - Ŋwh Water heater energy efficiency*
 - Prated Declared heating power

^{*}Checked during market surveillance



EN 12102-2:2019

Air conditioners, liquid chilling packages, heat pumps, process chillers and dehumidifiers with electrically driven compressors - Determination of the sound power level - Part 2: Heat pump water heaters

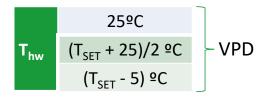
It stablish the test methods to determine the sound power level for DHW products

EN 12102-2:2019 + EN ISO 3741:2010

- 3 different test methods
- The method depends on the VPD (volumic power density)
- VPD relates to the hot water tank heat-up speed and thus,
- How fast the running parameters of the heat pump change accross time.

EN 12102-2:2019 + EN ISO 3741:2010

☐ The test is carried out under a permanently transient regime.


3 test procedures defined according to the *type* of equipment:

- VPD value ≤ 10
- VPD value > 10
- Direct cold water expansion (CO2 equipment)

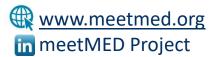
VPD - Volumetric Power Density

$$VPD = \frac{P_{rated}}{V_{tank}} \cdot 1000$$

☐ The test consists of determining the sound power levels when certain temperatures are reached in the DHW tank (ThW).

$$\frac{T_{\text{wo}} - T_{\text{start}}}{T_{\text{set}} - T_{\text{start}}} \times D_{\text{H}}$$

Final hot water temperature
Duration of warm-up
Initial DHW tank temperature (10±2K)
DHW storage tank setpoint temperature



Contact us!

Mitigation Enabling Energy Transition in the MEDiterranean region **Together We Switch to Clean Energy**

For any inquires or comments, please don't hesitate to contact US

@meetmed1

Thank you for your attention!

www.ceis.es

comercial@ceis.es

Tel. +34 91 616 97 10

Connect with @ceis [in

Annex I

Equations from test methods in EN 14511-3:2022

Indoor Air enthalpy test method

Total cooling capacity

apaoity

 $\phi_{\text{tci}} = \frac{q_{\text{vi}} \left(h_{\alpha 1} - h_{\alpha 2} \right)}{v'_{\text{n}} \left(1 + W_{\text{n}} \right)} 1 \ 000$

Sensible capacity

 $\phi_{s} = \frac{q_{vi} \left(c_{pa1} t_{a1} - c_{pa2} t_{a2} \right)}{v'_{n} \left(1 + W_{n} \right)}$

Latent capacity

For the cooling mode, it is recommended that the latent cooling capacity be determined using the cooling condensate flow rate measurement method.

$$\phi_d = \frac{K_1 q_{vi} (W_{i1} - W_{i2})}{v'_n (1 + W_n)} 1000$$

$$\phi_d = K_1 q_{wc}$$

$$\phi_{cl} = \phi_{tci} - \phi_{s}$$

Кеу	
qvi= Volumetric air flow rate (m^3/s)	v'n= specific air volume (m^3/kg)
K1 = Water vapour latent heat of vaporization = 2500,4 J/g at 0°C	h = air enthalpy (kJ/kg)
qwc = condensate waterflow rate (kg/s)	Wi(1,2) = specific humidity of air entering(1)/leaving(2) the indoor unit's coil ((kg of water / kJ of dry air)

Indoor Air enthalpy test method

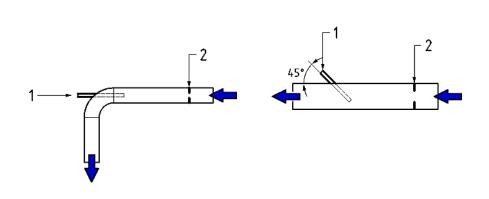
Heating capacity

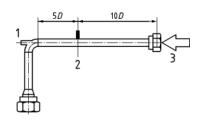
$$\phi_{thi} = \frac{q_{vi(h_{a2} - h_{a1})}}{v'_n (1 + W_n)}$$

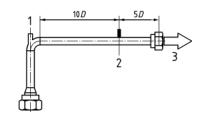
$$\phi_{thi} = \frac{q_{vi(c_{pa2} \times t_{a2} - c_{pa1} \times t_{a1})}}{v_n} = \frac{q_{vi(c_{pa2} \times t_{a2} - c_{pa1} \times t_{a1})}}{v'_n \times (1 + W_n)}$$

Кеу	
qvi= Volumetric air flow rate (m^3/s)	v'n= specific air volume (m^3/kg)
h = air enthalpy (kJ/kg)	Wn = specific humidity at nozzles section (kg of water / kg of dry air)
Cp = specific heat of air	t = air temperature (dry bulb)

Indoor water enthalpy test method


Cooling capacity


$\phi_{tci} = -q_v \times \rho \times \left(c_{p_out} \times t_{out} - c_{p_in} \times t_{in}\right) \qquad \phi_{thi} = q_v \times \rho \times \left(c_{p_out} \times t_{out} - c_{p_in} \times t_{in}\right)$


Heating capacity

$$\phi_{thi} = q_v \times \rho \times (c_{p_out} \times t_{out} - c_{p_in} \times t_{in})$$

Кеу	
qv= Volumetric water flow rate (m^3/s)	ρ = Water density (kg/m ³)
Cp = specific heat of water (kJ/(kg/°C)	t = water temperature (dry bulb) (°C)

Annex II

Test conditions from EN 14825 in cooling mode

• Air-to-air units

	Part load	Part load	Outdoor air dry bulb temperature	Indoor air Dry bulb (wet bulb) temperatures
		%	°C	°C
А	(35-16)/(_{Tdesignc} -16)	100	35	27(19)
В	(30-16)/(_{Tdesignc} -16)	73,68	30	27(19)
С	(25-16)/(_{Tdesignc} -16)	47,37	25	27(19)
D	(20-16)/(_{Tdesignc} -16)	21,05	20	27(19)

• Water-to-air units

			Outdoo	Outdoor heat exchanger					
	Part load	Part load	Cooling tower or water loop ^b Water inlet and outlet temperatures	Geothermal (water or brine) Water inlet and outlet temperatures	Dry cooling Water inlet and outlet temperatures	Dry bulb temperature (wet bulb) indoor air			
		%	°C	°C	°C	°C			
Α	(35-16)/(_{Tdesignc} -16)	100	30 / 35	10 / 15	50 / 55				
В	(30-16)/(_{Tdesignc} -16)	73,68	26 / ª	10 / a	45 / a	27(19)			
С	(25-16)/(_{Tdesignc} -16)	47,37	22 / ^a	10 / a 40 / a		27(13)			
D	(20-16)/(_{Tdesignc} -16)	21,05	18 / ª	10 / a	35 / ª				

^a Water flow rate as determined in the "A" test.

b If a cooling tower and a water-air unit are sold as a set, they must be tested as one air-air unit.

• Air-to-water units

			Outdoor hea	t exchanger	Inc	door heat exchang	ger
		Part load	Dry bulb outside air		Fan coil a	oplication	Application Refrigerated floor
	Part load			Dry bulb exhaust air	Water temper Inlet/0	Water temperatures (brine) Inlet/Outlet	
					Fixed output	Variable output ^b	
		%	°C	°C	°C	°C	°C
Α	(35-16)/(_{Tdesignc} - 16)	100	35	27	12 / 7	12 / 7	23 / 18
В	(30-16)/(_{Tdesignc} - 16)	73,68	30	27	a / 7	^a / 8,5	^a / 18
С	(25-16)/(_{Tdesignc} - 16)	47,37	25	27	a / 7	a / 10	a / 18
D	(20-16)/(_{Tdesignc} - 16)	21,05	20	27	a / 7	^a / 11,5	a / 18

^a With the water flow rate determined during test "A" for units with fixed flow rate or with 5K temperature difference for units with variable flow rate. If in a test condition the resulting flow rate is less than the mínimum allowed by the unit, then the minimum flow rate and the required outlet temperature is used.

^b If the variable output temperature is above the maximum output temperature (of the unit), the maximum value allowed by the unit is used.

• Water(brine)-to-water(brine) units

				Outdoor hea	t exchanger		In	ternal heat exchang	er
	p e	Part load	wer or (brine) utlet ures of	rmal tion t water es (brine)	oplication t water eratures	perature	Fan coil a	pplication	Application Refrigerated floor
	Part load		Cooling tower or water loop (brine) Inlet/outlet temperatures of water (brine)	Geothermal application Inlet/outlet water temperatures (brine)	Dry cooler application Inlet/outlet water (brine) temperatures	DX Bath temperature	Water tempe Inlet/	Water temperatures (brine) Inlet/Outlet	
							Fixed output	Variable output ^b	
		%	°C	°C	°C	°C	°C	°C	°C
Α	(35-16)/	100	30 / 35	10 / 15	50 / 55	30	12 / 7	12 / 7	23 / 18
^	(_{Tdesignc} - 16)	100	30 / 33	10 / 13	30 / 33	30	12 / /	12 / /	23 / 18
В	(30-16)/	73,68	26 / ^b	10 / ^b	45 / ^b	30	a / 7	^a / 8,5	^a / 18
В	(_{Tdesignc} - 16)	73,08	20 /	10 /	43 /	30	, ,	7 6,5	/ 18
С	(25-16)/	47,37	22 / ^b	10 / b	40 / ^b	30	a / 7	a / 10	a / 18
C	(_{Tdesignc} - 16)	47,37	22 /	10 /	40 /	30	/ /	/ 10	/ 18
D	(20-16)/ (_{Tdesignc} - 16)	21,05	18 / ^b	10 / b	35 / ^b	30	^a / 7	^a / 11,5	^a / 18

^a With the water flow rate determined during test "A" for units with fixed flow rate or with 5K temperature difference for units with variable flow rate. If in a test condition the resulting flow rate is less than the minimum, then the minimum flow rate and the required outlet temperature is used.

b With the water flow rate determined during test "A" for units with fixed flow rate or with 5K temperature difference for units with variable flow rate. If in a test condition the resulting flow rate is less than the minimum, then the minimum flow rate and the required inlet temperature is used.

^c If the varaible output temperature is above the maximum output temperature (of the unit), the maximum value allowed by the unit is used.

Annex II

Test conditions from EN 14825 in Heating mode

Test Conditions

Air-to-air units

	Par	tial load in %	of load	Outdoor heat exchanger	Internal heat exchanger	
	Part load	Part load Average		Colder	Dry(wet) bulb temperatures °C	Dry bulb temperature °C
Α	(-7 - 16) / (_{Tdesignh} -16)	88,46	n/a	60,53	-7(-8)	20
В	(+2 - 16) / (_{Tdesignh} -16)	53,85	100	36,84	2(1)	20
С	(+7 - 16) / (_{Tdesignh} -16)	34,62	64,29	23,68	7(6)	20
D	(+12 - 16) / (_{Tdesignh} -16)	15,38	15,38 28,57		12(11)	20
E	(TO	La - 16) / (_{Tdes}	_{ignh} - 16)		TOL	20
F	(Tbiva	elent - 16) / ($_{\scriptscriptstyle T}$	designh - 16)		Tbivalent	20
G	(-15 - 16) / (_{Tdesignh} <u>-16</u>)	n/a	n/a	81,58	-15	20

^a If TOL <Tdesignh replace TOL by Tdesignh

• Water(brine)-to-air units

	Pa	art load			Outdoo	or heat exchanger		Indoor heat
		%			Input/oເ		exchanger	
	Formula	Average	Warmer	Colder	Water	Brine	Water loop	Dry bulb
	Torritara	, iveluge	· · · · · · · · · · · · · · · · · · ·	coluci	°C	°C	°C	°C
А	(-7 - 16) / (_{Tdesignh} - 16)	88,46	n.a.	60,53	10 / ª	0 / a	20/ ^a	20
В	(+2 - 16) / (_{Tdesignh} - 16)	53,85	100	36,84	10 / ª	0 / ^a	20/ª	20
С	(+7 - 16) / (_{Tdesignh} - 16)	34,62	64,29	23,68	10 / ^a	0 / ^a	20/ ^a	20
D	(+12 - 16) / (_{Tdesignh} - 16)	15,38	28,57	10,53	10 / ^a	0 / ª	20/ ^a	20
Е	(TOL ^b - 16) / (_{Tdesignh} -	16)		10 / a	0 / a	20/ ^a	20
F		/ (Tdesignh -	16)		10 / a 0 / a		20/ ^a emperature diffe	20 rence of 3K for

a With the water flow rate determined at the standard conditions given in table 5 of EN 14511-2:2018 for fixed flow units or with a temperature difference of 3K for variable flow units. If in any test condition the required flow rate is lower than the minimum flow rate of the unit, the minimum flow rate with the inlet temperature for that condition is used.

b If TOL <Tdesignh replace TOL by Tdesignh

Air-to-water(brine) units -Low temperature application

		Partial	Load		Outdoor heat	exchanger		Indoor he	eat exchanger		
		%			Dry Bulb (Wet Bulb	Dry Bulb (Wet Bulb) temperatures			Variable Output ^d		
					°C		°C		°C		
	Formula	Average	Warmer	Colder	Outdoor air	Exhaust air		Average	Warmer	Colder	
	(-7 - 16) /				-4-5		2 4	2.4		2.4	
А	(_{Tdesignh} - 16)	88,46	n.a.	60,53	-7(-8)	20(12)	^a / 35	^a / 34	n.a.	^a /30	
	(+2 - 16) /										
В	(_{Tdesignh} - 16) 53,85	100	36,84	6,84 2(1)	20(12)	^a / 35	^a / 30	ª / 35	^a / 27		
	(+7 - 16) /										
С	(_{Tdesignh} - 16)	34,62	64,29	23,68	7(6)	20(12)	a / 35	^a / 27	ª / 31	^a / 25	
	(+12 - 16)/										
D	(_{Tdesignh} - 16)	15,38	28,57	10,53	12(11)	20(12)	a / 35	^a / 24	ª / 26	a / 24	
Е	(TOL ^e - 16) / (_{Tdesignh} - 16)				TOL ^e	20(12)	a / 35	a / b	a / b	a / b	
F	(T _{biv} - 16) / (_{Tdesignh} - 16)				T _{biv}	20(12)	^a / 35	a / c	a / c	a/c	
	(-15 - 16) /			04.50	45	20/42)	a / 25			a / 22	
G	(_{Tdesignh} - 16)	n.a.	n.a.	81,58	-15	20(12)	^a / 35	n.a.	n.a.	a / 32	

a With the flow rate determined at the nominal conditions in Table 12 of EN 14511-2:2018 at conditions 30/35 for fixed flow units, and with a water temperature difference of 5K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate for the unit, the minimum flow rate is used together with the outlet water temperature.

^b The variable outlet temperature is calculated by interpolation from Tsedign to the temperature closest to TOL.

^c The variable outlet temperature is calculated by interpolation from the temperatures immediately above and below Tbivalent.

d If the output temperature is below the unit minimum, the unit minimum is used.

e If TOL < Tdesignh then TOL is replaced by Tdesignh.

Air-to-water(brine) units - Intermediate temperature application

		Partial	Load		Outdoor heat e	exchanger		Indoor h	eat exchanger	Indoor heat exchanger						
		%			Dry Bulb (Wet Bulb)	Dry Bulb (Wet Bulb) temperatures			Fixed Variable Output ^d							
					°C		°C		°C							
	Formula	Average	Warmer	Colder	Outdoor air	Exhaust air		Average	Warmer	Colder						
	(-7 - 16) /				-4 -1		2.4	2.4		2.4						
А	(_{Tdesignh} - 16)	88,46	88,46	n.a.	60,53	-7(-8)	20(12)	^a / 45	ª / 43	n.a.	^a /38					
	(+2 - 16) /	52.85														
В	(_{Tdesignh} - 16)		100	36,84	2(1)	20(12)	ª / 45	a / 37	ª / 45	a / 33						
	(+7 - 16) /															
С	(_{Tdesignh} - 16)	34,62	64,29	23,68	7(6)	20(12)	ª / 45	ª / 33	ª / 39	a / 30						
	(+12 - 16)/															
D	(_{Tdesignh} - 16)	15,38	28,57	10,53	12(11)	20(12)	ª / 45	ª / 28	a / 31	a / 26						
E	(TOL ^e - 16) / (_{Tdesignh} - 16)				TOL ^e	20(12)	^a / 45	a / b	a / b	a / b						
F	(T _{biv} - 16) / (_{Tdesignh} - 16)				T _{biv}	20(12)	^a / 45	a / c	a / c	a / c						
G	(-15 - 16) / (_{Tdesignh} - 16)	n.a.	n.a.	81,58	-15	20(12)	a / 45	n.a.	n.a.	a / 41						

a With the flow rate determined at the nominal conditions in Table 13 of EN 14511-2:2018 at conditions 40/45 for fixed flow units, and with a water temperature difference of 5K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit, the minimum flow rate is used together with the outlet water temperature.

The variable outlet temperature is calculated by interpolation from Tsedign to the temperature closest to TOL.

fine variable outlet temperature is calculated by interpolation from the temperatures immediately above and below Tbivalent.

If the output temperature is below the unit minimum, the unit minimum is used.

If TOL < Tdesignh then TOL is replaced by Tdesignh.

Air-to-water units(brine) Medium temperature application

		Partial	Load		Outdoor heat e	exchanger		Indoor he	eat exchanger	
		%			Dry Bulb (Wet Bulb)	Fixed output	Variable Output"			
					°C		°C		°C	
	Formula	Average	Warmer	Colder	Outdoor air	Exhaust air		Average	Warmer	Colder
	(-7 - 16) /									
Α	(_{Tdesignh} - 16)	88,46	n.a.	60,53	-7(-8)	20(12)	a / 55	a / 52	n.a.	^a / 44
	(+2 - 16) /									
В	(_{Tdesignh} - 16)	53,85 100	100	100 36,84	36,84 2(1)	20(12)	a / 55	a / 42	ª / 55	a / 37
	(+7 - 16) /									
С	(_{Tdesignh} - 16)	34,62	64,29	23,68	7(6)	20(12)	a / 55	^a / 36	^a / 46	a / 32
	(+12 - 16)/									
D	(_{Tdesignh} - 16)	15,38	28,57	10,53	12(11)	20(12)	a / 55	ª / 30	a / 34	a / 28
E	(TOL ^e - 16) / (_{Tdesignh} - 16)				TOL ^e	20(12)	a / 55	a / b	a / b	a / b
F	(T _{biv} - 16) / (_{Tdesignh} - 16)				T _{biv}	20(12)	^a / 55	a / c	a / c	a / c
G	(-15 - 16) / (_{Tdesignh} - 16)	n.a.	n.a.	81,58	-15	20(12)	ª / 55	n.a.	n.a.	a / 49

a With the flow rate determined at the nominal conditions in Table 14 of EN 14511-2:2018 at conditions 47/55 for fixed flow units, and with a water temperature difference of 8K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the outlet water temperature.

^b The variable outlet temperature is calculated by interpolation from Tsedign to the temperature closest to TOL.

^c The variable outlet temperature is calculated by interpolation from the temperatures immediately above and below Tbivalent.

f the output temperature is below the unit minimum, the unit minimum is used.

e If TOL < Tdesignh then TOL is replaced by Tdesignh.

Air-to-water units(brine) High temperature application

		Partial	Load		Outdoor heat e	xchanger		Temperatures heat exchanger			
		%			Dry Bulb (Wet Bulb)	Fixed output	Variable Output ^d				
					°C	°C	°C				
	Formula	Average	Warmer	Colder	Outdoor air	Exhaust air		Average	Warmer	Colder	
	(-7 - 16) /				-4 -1		2.4	2.4		2.4	
Α	(_{Tdesignh} - 16)	88,46	n.a.	60,53	-7(-8)	20(12)	ª / 65	^a / 61	n.a.	^a / 50	
	(+2 - 16)/		100	36,84	2(1)	20(12)	a / 65		a / 65		
В	(_{Tdesignh} - 16)	53,85						^a / 49		^a / 41	
	(+7 - 16) /										
С	(_{Tdesignh} - 16)	34,62	64,29	23,68	7(6)	20(12)	ª / 65	^a / 41	ª / 53	^a / 36	
	(+12 - 16)/										
D	(_{Tdesignh} - 16)	15,38	28,57	10,53	12(11)	20(12)	ª / 65	^a / 32	ª / 39	^a /30	
E	(TOL ^e - 16) / (_{Tdesignh} - 16)			TOL ^e	20(12)	^a / 65	a / b	a / b	a / b		
F	(T _{biv} - 16) / (_{Tdesignh} - 16)			T _{biv}	20(12)	^a / 65	a / c	a / c	a / c		
G	(-15 - 16) / (_{Tdesignh} - 16)	n.a.	n.a.	81,58	-15	20(12)	a / 65	n.a.	n.a.	a / 57	

at the flow rate determined at the nominal conditions in Table 15 of EN 14511-2:2018 at conditions 55/65 for fixed flow units, and at a water temperature difference of 10K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the outlet water temperature.

^b The variable outlet temperature is calculated by interpolation from Tsedign to the temperature closest to TOL.

Ethe variable outlet temperature is calculated by interpolation from the temperatures immediately above and below Tbivalent.

If the output temperature is below the unit minimum, the unit minimum is used.

e If TOL < Tdesignh then TOL is replaced by Tdesignh.</p>

Water(brine)-to-water units Low temperature application

		Part	load		Outo	Outdoor heat exchanger			Indoor heat exchanger			
					Tempera	Temperatures of Temperature		Fixed output Variable output ^d			.d	
		9	6		Input /	Output	bathroom	°C	°C			
					°C °C							
	Formula	ormula Average Warmer Colder			Water	Brine	DX		Average	Warmer	Colder	
Α	(-7 - 16)/	88,46	n.a.	60,53	10 / b	0 / b	4	a / 35	a / 34	n.a.	a / 30	
	(_{Tdesignh} - 16)		ina.	00,55	107	• /	7	,	,		,	
В	(+2 - 16) /	53,85	52 25	100	36,84	10 / b	0 / b	4	a / 35	a / 30	a / 35	a / 27
	(_{Tdesignh} - 16)		-00	30,0 .	.,	- '	·	,	, 55	,	,	
C	(+7 - 16) /	34 62	34,62	64,29	23,68	10 / b	0/b	4	a / 35	a / 27	a / 31	a / 25
, in the second second	(_{Tdesignh} - 16)	3-1,02	04,23	23,00	107	٠,	7	, 33	, _,	, 51	, 23	
D	(+12 - 16) /	15 30	15,38	28,57	10,53	10 / b	0 / b	4	a / 35	a / 24	a / 26	a / 24
	(_{Tdesignh} - 16)	13,36 26,37		10,55	107	0,	7	7 33	, 24	, 20	, 24	
E	(_{Tdesignh} - 16) / (_{Tdesignh} - 16)	100			10 / b	0 / b	4	a / 35	a / 35	ª / 35	a / 35	
F		(T _{biv} - 16) /	(_{Tdesignh} - 16)		10 / b	0 / b	4	^a / 35	a / c	a / c	a / c	

^a With the flow rate determined at the standardised conditions given in Table 7 of EN 14511-2:2018 or Table 3 of EN 15879-1:2011 at conditions 30/35 for fixed flow units, and with a water temperature difference of 5K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the water outlet temperature.

^b With the flow rate determined at the standardised conditions given in Table 7 of EN 14511-2:2018 for fixed flow units, and with a water temperature difference of 3K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the inlet water temperature.

^c The variable output temperature is calculated by interpolation from the temperatures immediately above and below Tbivalent.

d If the output temperature is below the unit minimum, the unit minimum is used.

Water(brine)-to-water units Intermediate temperature application

		Part	load		Outo	door heat exch	anger		Indoor heat exchanger			
					Temper	atures of	Temperature	Fixed output	Variable output ^d			
		9	%		Input / Output bathroom °C °C		bathroom	°C		°C		
							°C					
	Formula	Medium	Tempering	Cold	Water	Brine	DX		Medium	Tempering	Cold	
Α	(-7 - 16) /	88,46	n.a.	60,53	10 / b	0 / b	4	a / 45	a / 43	n.a.	a / 38	
	(_{Tdesignh} - 16)	55, 15		00,00	20,	٠,	·	,	,		,	
В	(+2 - 16) /	53,85	100	36,84	10 / b	0 / b	4	a / 45	a / 37	a / 45	a / 33	
	(_{Tdesignh} - 16)	,		,-		- •		, -	•	,	•	
С	(+7 - 16) /	34.62	34,62	64,29	23,68	10 / b	0 / b	4	a / 45	a / 33	a / 39	a / 30
	(_{Tdesignh} - 16)	. , .	. , .	-,		- •		•	•	,	•	
D	(+12 - 16) /	15,38	28,57	10,53	10 / b	0/b	4	a / 45	a / 28	a / 31	a / 26	
	(_{Tdesignh} - 16)	-5,55			,	-,		,	,	,	, =-	
E	(_{Tdesignh} - 16) / (_{Tdesignh} - 16)	100			10 / b	0 / b	4	a / 45	^a / 45	a / 45	^a / 45	
F		(T _{biv} - 16) /	(_{Tdesignh} - 16)		10 / ^b	0/ ^b	4	^a / 45	a / c	a/c	a / c	

^a With the flow rate determined at the standardised conditions given in Table 8 of EN 14511-2:2018 or Table 3 of EN 15879-1:2011 at conditions 40/45 for fixed flow units, and with a water temperature difference of 5K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the water outlet temperature.

b With the flow rate determined at the standardised conditions given in Table 8 of EN 14511-2:2018 for fixed flow units, and with a water temperature difference of 3K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the inlet water temperature.

^c The variable output temperature is calculated by interpolation from the temperatures immediately above and below Tbivalent.

^d If the output temperature is below the unit minimum, the unit minimum is used.

Water(brine)-to-water units Medium temperature application

		Part	load		Outo	Outdoor heat exchanger			Indoor heat exchanger			
					Inlet /	Outlet	Bath	Fixed output	Variable output ^d			
		9	6		temperatures temperature			°C	°C			
					°C							
	Formula	Formula Average Warmer Colder			Water	Brine	DX		Average	Warmer	Colder	
А	(-7 - 16) / (_{Tdesignh} - 16)	88,46	n.a.	60,53	10 / b	0 / b	4	a / 55	a / 52	n.a.	a / 44	
В	(+2 - 16) / (_{Tdesignh} - 16)	53,85 100 36,8		36,84	10 / b	0 / b	4	a / 55	a / 42	a / 55	a / 37	
С	(+7 - 16) / (_{Tdesignh} - 16)	34,62 64,29 23,68		10 / b	0 / b	4	a / 55	a / 36	a / 46	a / 32		
D	(+12 - 16) / (_{Tdesignh} - 16)	15,38 28,57 10,53			10 / b	0 / b	4	a / 55	a / 30	a / 34	a / 28	
E	(_{Tdesignh} - 16) / (_{Tdesignh} - 16)	100			10 / b	0 / b	4	a / 55	a / 55	a / 55	a / 55	
F		(T _{biv} - 16) /	(_{Tdesignh} - 16)		10 / b	0/ ^b	4	a / 55	a / c	a / c	a / c	

^a With the flow rate determined at the standardised conditions given in Table 9 of EN 14511-2:2018 or Table 3 of EN 15879-1:2011 at conditions 47/55 for fixed flow units, and with a water temperature difference of 8K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the water outlet temperature.

b With the flow rate determined at the standardised conditions given in Table 9 of EN 14511-2:2018 for fixed flow units, and with a water temperature difference of 3K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the inlet water temperature.

^c The variable output temperature is calculated by interpolation from the temperatures immediately above and below Tbivalent.

^d If the output temperature is below the unit minimum, the unit minimum is used.

Water(brine)-to-water units High temperature application

		Part	load		Outo	Outdoor heat exchanger			Indoor heat exchanger			
					-	Outlet	Bath	Fixed output	Variable output ^d			
		9	%		temperatures temperature		°C	-				
	Formula	Аменеле	Manne	Colder	°C °C			C	°C Average Warmer Colder			
	Formula (-7 - 16) /	Average	Warmer	Colder	Water	Brine	DX		Average	Warmer		
Α	(_{Tdesignh} - 16)	88,46	n.a.	60,53	10 / b	0 / b	4	a / 65	a / 61	n.a.	a / 50	
В	(+2 - 16) /	53,85	100	36,84	10 / b	0/b	4	a / 65	a / 49	a / 65	a / 41	
	(_{Tdesignh} - 16)	33,63	100	30,04	10 /	٠,	,	7 03	7 43	, 03	7	
С	(+7 - 16) / (_{Tdesignh} - 16)	34,62 64,29 23,68		23,68	10 / b	0 / b	4	a / 65	a / 41	a / 53	a / 36	
D	(+12 - 16) /	45.20	20.57	40.53	40 / b	0/b		a / cr	2 / 22	8 / 20	2/20	
U	(_{Tdesignh} - 16)	15,38	28,57	10,53	10 / b	0/-	4	^a / 65	a / 32	a / 39	a / 30	
Е	(_{Tdesignh} - 16) / (_{Tdesignh} - 16))/ 100			10 / b	0/b	4	a / 65	a / 65	a / 65	a / 65	
F		(T _{biv} - 16) /	(_{Tdesignh} - 16)		10 / ^b	0/ ^b	4	a / 65	a / c	a / c	a / c	

^a At the flow rate determined at the standardised conditions given in Table 10 of EN 14511-2:2018 or Table 3 of EN 15879-1:2011 at conditions 55/65 for fixed flow units, and at a water temperature difference of 10K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the water outlet temperature.

^b With the flow rate determined at the standardised conditions given in Table 10 of EN 14511-2:2018 for fixed flow units, and with a water temperature difference of 3K for variable flow units. If for any test condition the resulting flow rate is less than the minimum flow rate of the unit then that minimum flow rate is used together with the inlet water temperature.

^c The variable output temperature is calculated by interpolation from the temperatures immediately above and below Tbivalent.

d If the output temperature is below the unit minimum, the unit minimum is used.