

Mitigation Enabling Energy Transition in the MEDiterranean region

ENERGY DESIGN AND EQUIPMENT (EDE)-INTRODUCTION

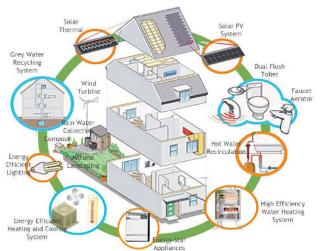
Prepared by Anissia Beainy, ALMEE

Presented by Adnan Jouni, ALMEE

Training on GRASSMED – meetMED II WP3_A3.1.6 Date 26-28 February 2024

www.meetmed.org

OUTLINE


- ✓ What are Energy systems Design and Equipment in regards to Green Buildings?
- ✓ What are the Major Goals of Proper "Energy systems Design and Equipment"?
- ✓ What are the Factors in Play?
- ✓ Guiding Principles for Energy systems Design and Equipment
 - Choosing Solar Water Heating
 - Using Renewable Energy Technologies
 - Implementing Daylight Design
 - Utilizing Natural & Mechanical Ventilation
 - Considering Building & Parking Lighting Efficiency
 - Designing and Selecting Systems (HVAC, Boilers...) and Air Curtains
 - Having Back Up Electricity
 - Promoting Building Management Systems.
- ✓ Grass Tool

What are Energy systems Design and Equipment in regards to Green Buildings?

• Energy-efficient buildings are designed and built to use less energy than a conventional building of the same size.

 "Energy System Design and Equipment" in green building refers to the design and selection of energy-efficient systems and equipment that minimize energy consumption and reduce greenhouse gas emissions in buildings

These systems and equipment can include heating, ventilation, and air conditioning (HVAC) systems, lighting systems, renewable energy systems (such as solar water heating systems, solar panels or wind turbines), and Building Management System

What are the Major Goals of Proper "Energy Design and Equipment"?

- Energy Efficiency: Energy-efficient systems and equipment can significantly reduce energy consumption, CO2 and other pollutant gases emission
- Cost Savings: Energy-efficient systems and equipment can save building owners and occupants money on Energy bills over time.
- Comfort: Energy-efficient HVAC systems can improve indoor air quality providing adequate ventilation, humidity and temperature.

Energy-efficient systems and equipment can reduce building environmental impacts and than help to create more ecofriendly and sustainable buildings.

What are the Factors in Play?

- Renewable Energy Systems: Renewable energy systems such as Solar Water Heater, Photovoltaic system, wind turbines..
- Daylight and Natural ventilation Design: toward a bioclimatic building concept

- Lighting Systems: Lighting is a significant contributor to energy consumption in buildings and Parking spaces.
- Building Management Systems: BMS can be used to control and optimize the energy consumption of systems, including HVAC and lighting.
- Heating, Ventilation, and Air Conditioning (HVAC) Systems: HVAC systems are one of the largest consumers of energy in buildings
- Efficient Back-Up power systems: Reduce Environmental Impacts of Diesel Generators by selecting proper exhausts with gas filtration and heat recovery systems

What are the Different Outlines to Evaluate?

There are 8 important outlines to evaluate a building's Energy systems design and selection of Equipment, in GRASSMED.

Choosing Solar Water Heating

- Identify and size
- High-quality products
- System monitoring and maintenance

Daylighting Design

- High-efficiency products
- Proper orientation
- Appropriate controls and sensors

Using Renewable Energy Technologies

- Orientation for better natural lighting
- Energy efficient glazing and shading
- Appropriate controls and sensors
- Using interior design strategies

Considering Building & Parking Lighting Efficiency

- Determine occupancy
- Use natural ventilation where possible
- Use efficient Mechanical ventilation

Designing and Selecting Systems (HVAC, Boilers...) and Air Curtains

- Reliable back-up system
- Proper sizing
- High-efficiency products

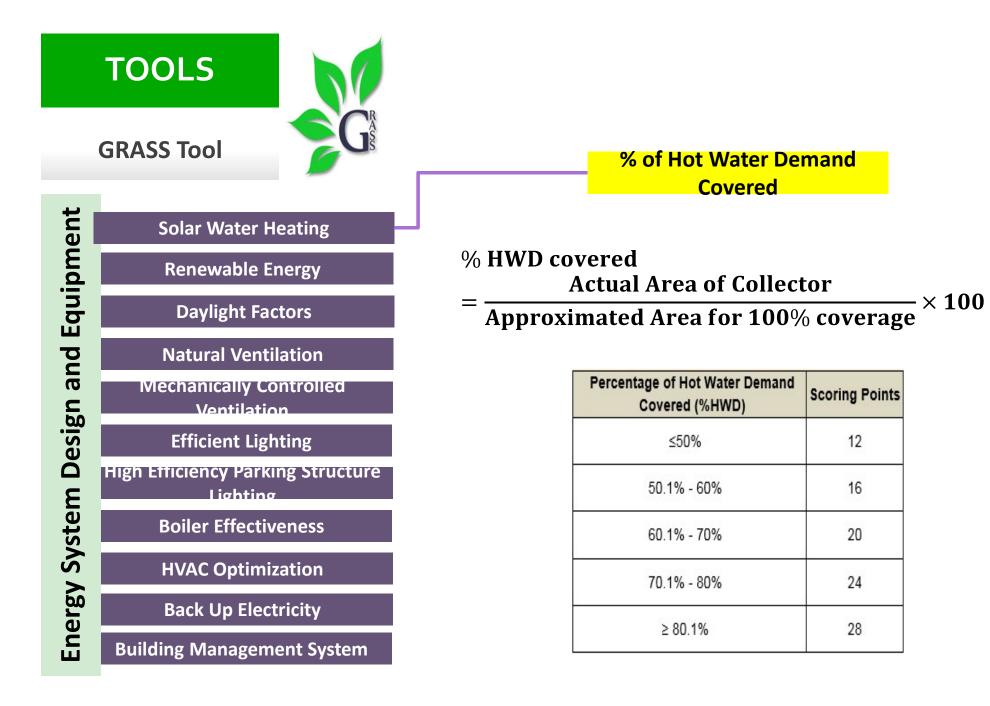
Promoting Building Management Systems

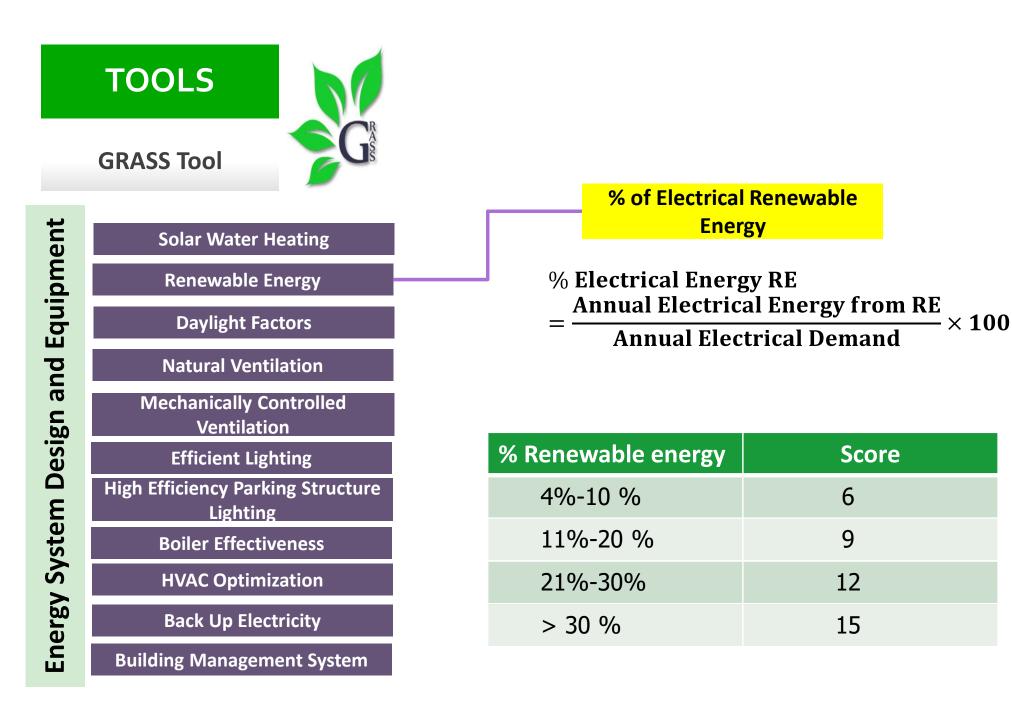
- Efficient lighting fixtures
- Lighting controls and proper design
- Daylighting strategies

Utilizing Natural & Mechanical Ventilation

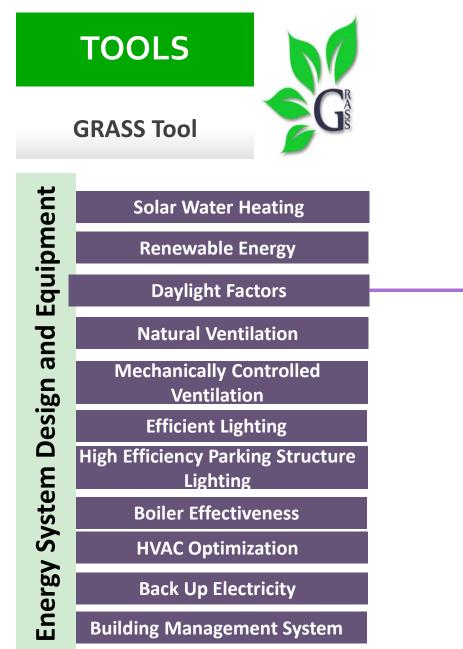
- High-efficiency products
- Proper sizing
- air curtains to separate indoor and outdoor environments

Having Back Up Electricity


- Implement BMS to monitor and control
- Use data analytics and AI to optimize consumption
- Regular maintenance


					% of Hot Water Demand Covered
	TOOLS				% of Renewable Energy
	GRASS Tool	11			Average Daylight & Compliance Factor
t t		. 111			Good Practices and Design Recommendation
Equipment	EDE1 - Solar Water Heating EDE2 - Renewable Energy				Mechanical Ventilation Requirement (Flow rate in cfm)
Equi	EDE3 - Daylight Factors				Power density ≤ 2.5 W/m2/100lux
	EDE4A - Natural Ventilation EDE4B - Mechanically Controlled		┙╟ᅳ		Covered LE>50lm/W Uncovered LE>60 lm/W
Design and	EDE5A - Efficient Lighting		, ال		AFUE / IEF% calculation
	EDE5B - High Efficiency Parking Structure Lighting	 			Design Requirement
System	EDE6A - Efficient Boiler /HVAC EDE6B - Air Curtains			┛┍╴	Exhaust Stack/ Innovation
Energy	EDE7 - Back Up Electricity				BMS components
En	EDE8 - Building Management System				

		r		ii	
		Commercial	Residential	Total Com	Total Res
	E1	150	150		
Envelope	E2	26	26		
	E3	15	15	191	191
	GS1	7	10		
	GS2	4	10		
Croop Sitos	GS3	4	10		
Green Sites	GS4	15	10		
	GS5	24	23		
	GS6	24	4	78	67
	EDE1	8	30		
	EDE2	15	15		
	EDE3	20	20		
	EDE4A	20	20		
	EDE4B	10	10		
Energy Design and Equipment	EDE5A	25	15		
	EDE5B	8	8		
	EDE6A	35	35		
	EDE6B	6	0		
	EDE7	15	15		
	EDE8	15	15	177	183
	WMHB1	29	29		
WMHB	WMHB2A	21	26		
	WMHB2B	29	29	79	84
				525	525



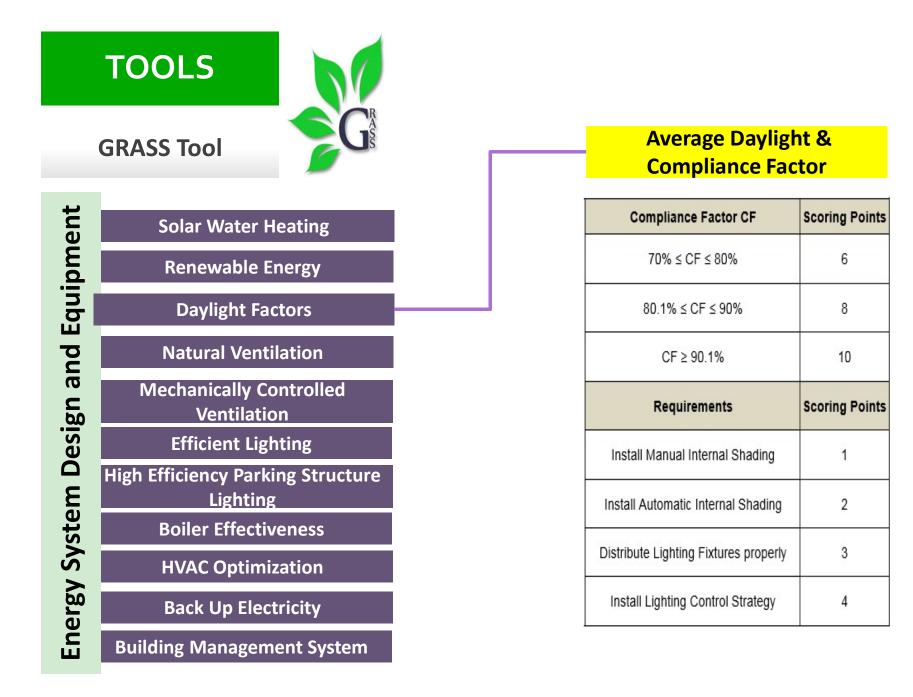
Average Daylight & Compliance Factor

$$ADF(\%) = \frac{V_t \times A_{Glazing} \times \theta}{A_S \times (1 - R^2)}$$

- Vt: transmittance of glass including dirt effect.
- AGlazing: net glazing area.

- O: the sky exposure angle, in degrees, the portion of the sky visible from the center of the window.
- As: total area of internal surfaces (i.e. the sum of the total surface area of walls including windows, ceiling, and floor).

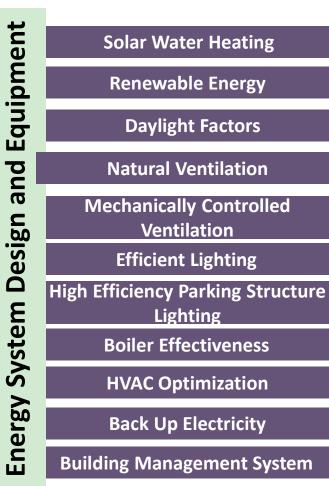
- **R:** equivalent réflectance of surfaces of walls, ceiling, floors.


CF

Total Floor Area of spaces having $ADF \ge 2\%$

Total Floor Area of occupied spaces

× 100



TOOLS

GRASS Tool

Lighting

Natural Ventilation Requirements

Design recommendation	Scoring Points
Maximize wind-induced ventilation by siting the ridge of a building perpendicular to the summer winds	5
Each room should have two separated supply and exhaust openings: 1.Locate exhaust high above inlet to maximize stack effect	3
2.Locate openings away from outdoor sources of pollutants and noise	3
Provide ridge vents	1
Allow for adequate internal airflow	1
Consider the use of clerestories or vented skylights	1
Apply Ventilation Configuration properly	6

	TOOLS		
	GRASS Tool	G	
ent	Solar Water H	eating	
Ed	Renewable Energy		
Equipment	Daylight Factors		
	Natural Ventil	ation	
gn al	Mechanically Co Ventilatio		
esig	Efficient Lighting		
oystem Design and	High Efficiency Parkin Lighting	ng Structure	
/ste	Boiler Effective	eness	
5	HVAC Optimiz	ation	

Back Up Electricity

Building Management System

Mechanical Ventilation Requirement

Meet the minimum requirements of ventilation rate in ASHRAE 62.2

CFM = 0.01(ASF) + 7.5(NBR+1)

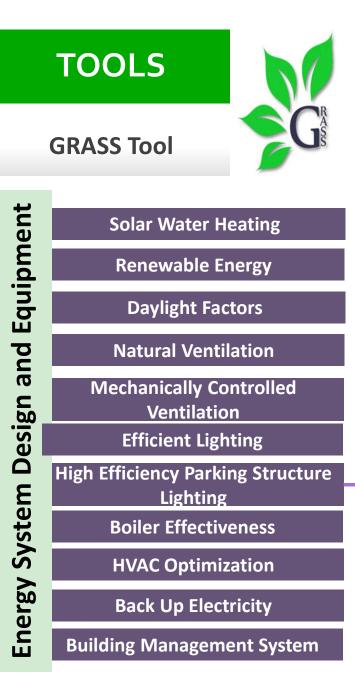
- Asf: area of the bedroom
- Nbr: number of bedrooms

TOOLS GRASS Tool

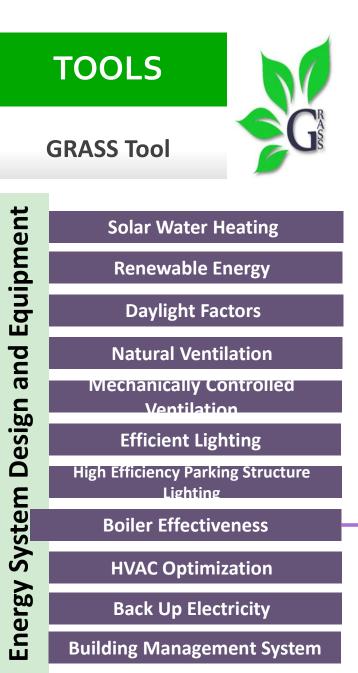
Solar Water Heating
Renewable Energy
Daylight Factors
Natural Ventilation
Mechanically Controlled Ventilation
Efficient Lighting
High Efficiency Parking Structure Lighting
Boiler Effectiveness
HVAC Optimization
Back Up Electricity

Building Management System

Mechanical Ventilation Requirement

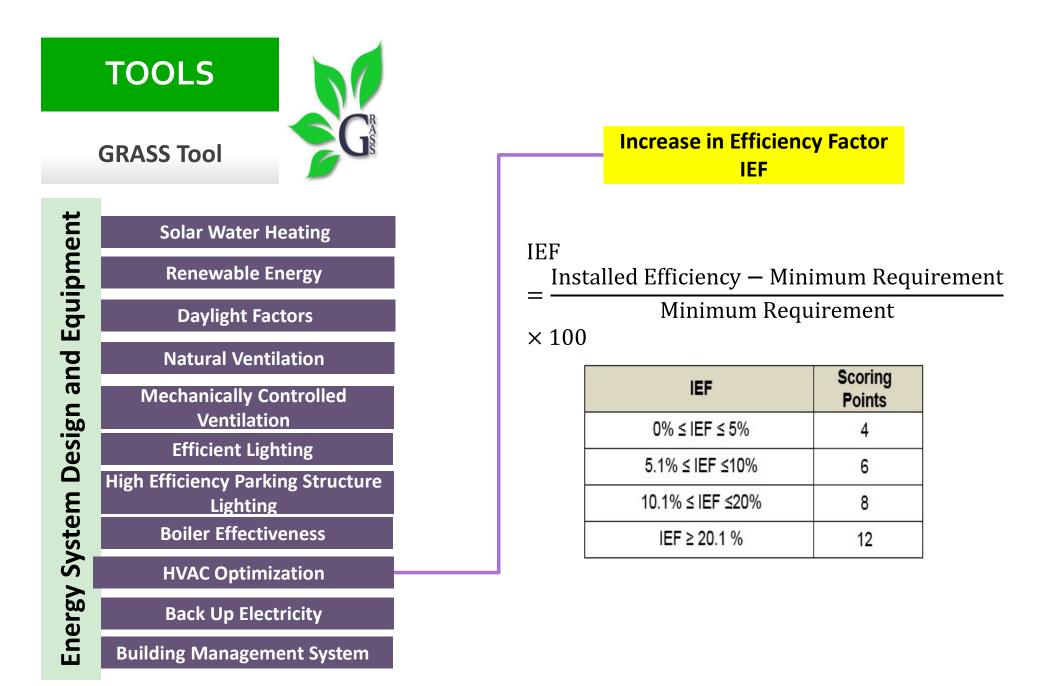

Mechanical Ventilation requirement	Scoring Points	
Conformity of Ventilation Rate in CFM	Prerequisite + 4	
Install Ventilation Control (CO2 sensors)	2	
Install Energy Recovery unit (ERV), or Heat Recovery unit (HRV)	4	

	TOOLS			
(GRASS Tool	GR		
	Solar Water H	eating	Luminaire Effica	acy
ı	Renewable Er	nergy	Requirements	Scoring points
	Daylight Fac	tors	Total Power installed ≤ 2.5	
	Natural Ventil	ation	W/m²/100 lux	
	Mechanically Co	ntrolled	No Incandescent lamps are installed	
	Ventilatio		Install lamps to be	
	Efficient Ligh		efficient within their typical applications	15- residential
	High Efficiency Parkin Lighting	ng Structure	Proposed	25- commercial
	Boiler Effectiv	eness	equipment must be	
	HVAC Optimiz	ation	UL, ETL or equivalent	
	Back Up Elect		Replace electromagnetic	
	Building Manageme	ent System	ballast by electronic ballast	


LISTED

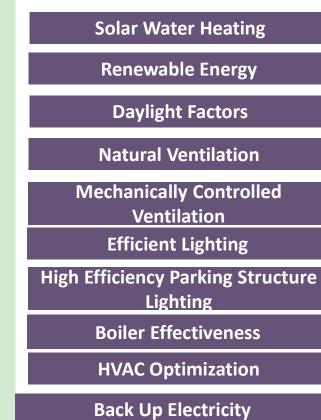
Parking Luminaire Efficacy

Case 1: all the parking lots are underground or covered.	Scoring Points
LE > 60 lm/W	2
Case 2: all the parking lots are uncovered.	Scoring Points
LE > 50 lm/W	2
Case 3: parking area is divided into covered and uncovered lots.	Scoring Points
Covered: LE > 60 lm/W	1
Uncovered: LE > 50 Im/W	1
Parking Structure Luminaire General Secondary Requirements for both covered and uncovered	Scoring Points
Replace traditional high-intensity discharge (HID) lighting sources with highly efficient lighting, preferably light-emitting diode (LED).	2
Achieve Minimum Horizontal lux value with respect to type of parking area	1
Achieve Minimum Vertical lux value with respect to type of parking area	1
Stain the ceilings white	1
80% of the luminaire material by weight should be recyclable at end of life.	1



Boiler/Furnace Requirements

Design Requirements	Scoring Points
Boiler/Furnace AFUE	Scoring Points
Mid-efficiency: 80%-85%	3
Intermediate-efficiency: 85.1%– 89.9%	5
High-efficiency: \geq 90%	7
Boiler/Furnace Exhaust Stack criteria	Scoring Points
Far from air intakes of other buildings	1
Mid-efficient Air Filters	1
High-efficient Air Filters	2
Boiler/Furnace Innovation	Scoring Points
Condensing unit	1
Heat Recovery Application	2
Energy Star label or equivalent label	1
Install CO detector	1

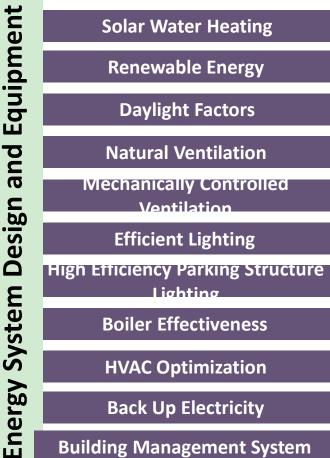


TOOLS

GRASS Tool

Building Management System

Back-up Energy Requirements


Requirement Applied	Scoring points
Install Sound Attenuators and Vibration Dampers	Prerequisite 1
Install catalyzers for air filtration	2
Exhaust Stack's Specifications	Scoring points
Install Effective optimal exhaust stacks	Prerequisite 2
Install away from air intakes of other building	1
Innovation	Scoring points
Innovation Install Heat Recovery unit	Scoring points
Install Heat Recovery unit	7
Install Heat Recovery unit Use 2% - 5% Biodiesel fuel	7
Install Heat Recovery unit Use 2% - 5% Biodiesel fuel Use 5.1% - 10% Biodiesel fuel	7 1 2

TOOLS

GRASS Tool

Building Management System

BMS Requirements

BMS comprises	Scoring Points
Power Systems control (PV, Generator,)	2
Electric Appliance control	3
Heating, Ventilation and Air- conditioning HVAC System / CO ₂ sensors for Mechanical Ventilation control	10
Illumination system control	Refer to credit EDE-5A - lighting

Contact us!

Mitigation Enabling Energy Transition in the MEDiterranean region Together We Switch to Clean Energy

For any inquires or comments, please don't hesitate to contact us

- in meetMED Project
- 🍠 @meetmed1

This project is funded by the European Union

To add the ones of ALMEE